{"title":"An on-chip continuous time power supply noise monitoring technique","authors":"Y. Bando, S. Takaya, M. Nagata","doi":"10.1109/ASSCC.2009.5357188","DOIUrl":null,"url":null,"abstract":"A continuous-time power supply noise monitoring technique features a coverage of voltage domains at Vdd as well as at Vss and multi-channel probing at more than a hundred locations on power planes in a circuit. Methods toward quality on-chip power supply noise measurements are derived. A calibration flow eliminates the offset as well as gain errors among probing channels. A combined evaluation of on-chip measurements and off-chip circuit simulation precisely characterizes probing performance. In addition, consistency was ensured among noise waveforms captured by sampled-time precise digitization and by the proposed continuous-time monitoring. A 90-nm CMOS on-chip monitor prototype demonstrates dynamic power supply noise measurements with ± 200 mV at 1.2 and 0.0 V, respectively, with less than 3 mV offset voltages among 240 probing channels, and with the effective bandwidth of 1.0 GHz.","PeriodicalId":263023,"journal":{"name":"2009 IEEE Asian Solid-State Circuits Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2009.5357188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
A continuous-time power supply noise monitoring technique features a coverage of voltage domains at Vdd as well as at Vss and multi-channel probing at more than a hundred locations on power planes in a circuit. Methods toward quality on-chip power supply noise measurements are derived. A calibration flow eliminates the offset as well as gain errors among probing channels. A combined evaluation of on-chip measurements and off-chip circuit simulation precisely characterizes probing performance. In addition, consistency was ensured among noise waveforms captured by sampled-time precise digitization and by the proposed continuous-time monitoring. A 90-nm CMOS on-chip monitor prototype demonstrates dynamic power supply noise measurements with ± 200 mV at 1.2 and 0.0 V, respectively, with less than 3 mV offset voltages among 240 probing channels, and with the effective bandwidth of 1.0 GHz.