Predicting Throughput of Cloud Network Infrastructure Using Neural Networks

Derek Phanekham, S. Nair, N. Rao, Mike Truty
{"title":"Predicting Throughput of Cloud Network Infrastructure Using Neural Networks","authors":"Derek Phanekham, S. Nair, N. Rao, Mike Truty","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484520","DOIUrl":null,"url":null,"abstract":"Throughput prediction of network infrastructures is an important aspect of capacity planning, scheduling, resource management, route selection and other network functions. In this paper, we describe throughput measurements collected over a network infrastructure that supports cloud computing spanning the globe. We train deep learning models to predict TCP throughput using these measurements, which show performance improvements with buffer tuning and parallel streams. We also compare the accuracy of machine learning and conventional methods in predicting both single thread and mutli-stream throughput in a public cloud environment.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Throughput prediction of network infrastructures is an important aspect of capacity planning, scheduling, resource management, route selection and other network functions. In this paper, we describe throughput measurements collected over a network infrastructure that supports cloud computing spanning the globe. We train deep learning models to predict TCP throughput using these measurements, which show performance improvements with buffer tuning and parallel streams. We also compare the accuracy of machine learning and conventional methods in predicting both single thread and mutli-stream throughput in a public cloud environment.
利用神经网络预测云网络基础设施的吞吐量
网络基础设施的吞吐量预测是容量规划、调度、资源管理、路由选择等网络功能的重要方面。在本文中,我们描述了通过支持跨全球云计算的网络基础设施收集的吞吐量测量。我们训练深度学习模型来使用这些测量来预测TCP吞吐量,这显示了缓冲调优和并行流的性能改进。我们还比较了机器学习和传统方法在预测公共云环境中单线程和多流吞吐量方面的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信