{"title":"On realizations of the subalgebra 𝒜^{ℝ}(1) of the ℝ-motivic Steenrod algebra","authors":"P. Bhattacharya, B. Guillou, A. Li","doi":"10.1090/btran/114","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that the finite subalgebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R Baseline left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}(1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, generated by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper S normal q Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">q</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Sq}^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper S normal q squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">S</mml:mi>\n <mml:mi mathvariant=\"normal\">q</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Sq}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic Steenrod algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be given 128 different <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-module structures. We also show that all of these <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules can be realized as the cohomology of a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-local finite <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic spectrum. The realization results are obtained using an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic analogue of the Toda realization theorem. We notice that each realization of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript double-struck upper R Baseline left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}^\\mathbb {R}(1)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be expressed as a cofiber of an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-motivic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"v 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>v</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">v_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-self-map. The <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C 2\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {C}_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper R normal upper O left-parenthesis normal upper C 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">R</mml:mi>\n <mml:mi mathvariant=\"normal\">O</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {RO}({\\mathrm {C}_2})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-graded Steenrod operations on a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C 2\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {C}_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper C 2\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">C</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {C}_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant realizations of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Superscript normal upper C 2 Baseline left-parenthesis 1 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n ","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we show that the finite subalgebra AR(1)\mathcal {A}^\mathbb {R}(1), generated by Sq1\mathrm {Sq}^1 and Sq2\mathrm {Sq}^2, of the R\mathbb {R}-motivic Steenrod algebra AR\mathcal {A}^\mathbb {R} can be given 128 different AR\mathcal {A}^\mathbb {R}-module structures. We also show that all of these A\mathcal {A}-modules can be realized as the cohomology of a 22-local finite R\mathbb {R}-motivic spectrum. The realization results are obtained using an R\mathbb {R}-motivic analogue of the Toda realization theorem. We notice that each realization of AR(1)\mathcal {A}^\mathbb {R}(1) can be expressed as a cofiber of an R\mathbb {R}-motivic v1v_1-self-map. The C2{\mathrm {C}_2}-equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the RO(C2)\mathrm {RO}({\mathrm {C}_2})-graded Steenrod operations on a C2{\mathrm {C}_2}-equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the C2{\mathrm {C}_2}-equivariant realizations of A