Level identification using input data mining for hierarchical fuzzy system

Kok Wai Wong, Tom Gedeon
{"title":"Level identification using input data mining for hierarchical fuzzy system","authors":"Kok Wai Wong, Tom Gedeon","doi":"10.1109/ANZIIS.2001.974108","DOIUrl":null,"url":null,"abstract":"Fuzzy rule based systems have been very popular in many control applications. However, when fuzzy control systems are used in real problems, many rules may be required. A hierarchical fuzzy system that partitions a problem for more efficient computation may be the answer. When creating a hierarchical fuzzy system, the level identification stage is crucial and time-consuming. This has a direct effect on how efficient the hierarchical fuzzy system is. This paper reports the use of an input data mining technique to efficiently perform the level identification stage. Without the use of input data mining, k*(k-1) ways of building the hierarchical fuzzy system must be tried.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuzzy rule based systems have been very popular in many control applications. However, when fuzzy control systems are used in real problems, many rules may be required. A hierarchical fuzzy system that partitions a problem for more efficient computation may be the answer. When creating a hierarchical fuzzy system, the level identification stage is crucial and time-consuming. This has a direct effect on how efficient the hierarchical fuzzy system is. This paper reports the use of an input data mining technique to efficiently perform the level identification stage. Without the use of input data mining, k*(k-1) ways of building the hierarchical fuzzy system must be tried.
基于输入数据挖掘的层次模糊系统等级识别
基于模糊规则的系统在许多控制应用中非常流行。然而,当模糊控制系统应用于实际问题时,可能需要许多规则。一个层次模糊系统可以将问题划分为更有效的计算,这可能是答案。在创建层次模糊系统时,层次识别阶段是关键且耗时的。这直接影响到层次模糊系统的效率。本文报告了使用输入数据挖掘技术来有效地执行级别识别阶段。在不使用输入数据挖掘的情况下,必须尝试k*(k-1)种构建层次模糊系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信