A Diffusion Model for Energy Harvesting Sensor Nodes

O. Abdelrahman, E. Gelenbe
{"title":"A Diffusion Model for Energy Harvesting Sensor Nodes","authors":"O. Abdelrahman, E. Gelenbe","doi":"10.1109/MASCOTS.2016.74","DOIUrl":null,"url":null,"abstract":"Energy harvesting has recently attracted much interest due to the emergence of the Internet of Things, and the increasing need to operate wireless sensing devices in challenging environments without much human intervention and maintenance. This paper presents a novel approach for modeling the performance of an energy harvesting wireless sensor node, which takes into account fluctuations in the amount of energy extracted from the environment, energy loss due to battery leakage, as well as the energy cost of sensing, data processing and communication. The proposed approach departs from the common queueing-theoretic framework used in the literature, and instead uses Brownian motion to represent more accurately the time evolution of the distribution of the node's battery level. The paper derives some performance measures of interest along with the stationary solution of the system, and discusses possible directions for reducing the number of parameters and states of the model without compromising accuracy.","PeriodicalId":129389,"journal":{"name":"2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"33 35","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS.2016.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Energy harvesting has recently attracted much interest due to the emergence of the Internet of Things, and the increasing need to operate wireless sensing devices in challenging environments without much human intervention and maintenance. This paper presents a novel approach for modeling the performance of an energy harvesting wireless sensor node, which takes into account fluctuations in the amount of energy extracted from the environment, energy loss due to battery leakage, as well as the energy cost of sensing, data processing and communication. The proposed approach departs from the common queueing-theoretic framework used in the literature, and instead uses Brownian motion to represent more accurately the time evolution of the distribution of the node's battery level. The paper derives some performance measures of interest along with the stationary solution of the system, and discusses possible directions for reducing the number of parameters and states of the model without compromising accuracy.
能量收集传感器节点的扩散模型
由于物联网的出现,以及在没有太多人为干预和维护的具有挑战性的环境中操作无线传感设备的需求日益增加,能量收集最近引起了人们的极大兴趣。本文提出了一种新的方法来模拟能量收集无线传感器节点的性能,该方法考虑了从环境中提取的能量的波动、电池泄漏造成的能量损失以及传感、数据处理和通信的能量成本。提出的方法与文献中使用的常见排队理论框架不同,而是使用布朗运动来更准确地表示节点电池电量分布的时间演变。本文导出了一些令人感兴趣的性能度量以及系统的平稳解,并讨论了在不影响精度的情况下减少模型参数和状态数量的可能方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信