Multiresolution 2-dimensional edge analysis using wavelets

K. Takaya, G. Sarty, X. Li
{"title":"Multiresolution 2-dimensional edge analysis using wavelets","authors":"K. Takaya, G. Sarty, X. Li","doi":"10.1109/WESCAN.1993.270519","DOIUrl":null,"url":null,"abstract":"The authors show that wavelet transforms can be used in an empirical way to improve edge-detected pictures. Specifically, the first derivative of a Gaussian distribution function is used as the wavelet for detecting edges. The wavelet transforms are calculated using integer scales instead of dyadic scales. This empirical approach is justified by comparing the method with an exact reconstruction process that uses wavelet transforms of the original image. The approach was demonstrated in an experiment that used a magnetic resonance image of a brain.<<ETX>>","PeriodicalId":146674,"journal":{"name":"IEEE WESCANEX 93 Communications, Computers and Power in the Modern Environment - Conference Proceedings","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE WESCANEX 93 Communications, Computers and Power in the Modern Environment - Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WESCAN.1993.270519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The authors show that wavelet transforms can be used in an empirical way to improve edge-detected pictures. Specifically, the first derivative of a Gaussian distribution function is used as the wavelet for detecting edges. The wavelet transforms are calculated using integer scales instead of dyadic scales. This empirical approach is justified by comparing the method with an exact reconstruction process that uses wavelet transforms of the original image. The approach was demonstrated in an experiment that used a magnetic resonance image of a brain.<>
基于小波的多分辨率二维边缘分析
作者证明了小波变换可以以一种经验的方式来改善边缘检测图像。具体来说,利用高斯分布函数的一阶导数作为检测边缘的小波。用整数尺度代替二进尺度计算小波变换。通过将该方法与使用原始图像的小波变换的精确重建过程进行比较,证明了这种经验方法的合理性。这种方法在一项使用大脑磁共振成像的实验中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信