On canonical polyadic decomposition of overcomplete tensors of arbitrary even order

A. Koochakzadeh, P. Pal
{"title":"On canonical polyadic decomposition of overcomplete tensors of arbitrary even order","authors":"A. Koochakzadeh, P. Pal","doi":"10.1109/CAMSAP.2017.8313191","DOIUrl":null,"url":null,"abstract":"Decomposition of tensors into summation of rank one components, known as Canonical Polyadic (CP) decomposition, has long been studied in the literature. Although the CP-rank of tensors can far exceed their dimensions (in which case they are called overcomplete tensors), there are only a handful of algorithms which consider CP-decomposition of such overcomplete tensors, and most of the CP-decomposition algorithms proposed in literature deal with simpler cases where the rank is of the same order as the dimensions of the tensor. In this paper, we consider symmetric tensors of arbitrary even order whose eigenvalues are assumed to be positive. We show that for a 2dth order tensor with dimension N, under some mild conditions, the problem of CP-decomposition is equivalent to solving a system of quadratic equations, even when the rank is as large as O(Nd). We will develop two different algorithms (one convex, and one nonconvex) to solve this system of quadratic equations. Our simulations show that successful recovery of eigenvectors is possible even if the rank is much larger than the dimension of the tensor.1","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Decomposition of tensors into summation of rank one components, known as Canonical Polyadic (CP) decomposition, has long been studied in the literature. Although the CP-rank of tensors can far exceed their dimensions (in which case they are called overcomplete tensors), there are only a handful of algorithms which consider CP-decomposition of such overcomplete tensors, and most of the CP-decomposition algorithms proposed in literature deal with simpler cases where the rank is of the same order as the dimensions of the tensor. In this paper, we consider symmetric tensors of arbitrary even order whose eigenvalues are assumed to be positive. We show that for a 2dth order tensor with dimension N, under some mild conditions, the problem of CP-decomposition is equivalent to solving a system of quadratic equations, even when the rank is as large as O(Nd). We will develop two different algorithms (one convex, and one nonconvex) to solve this system of quadratic equations. Our simulations show that successful recovery of eigenvectors is possible even if the rank is much larger than the dimension of the tensor.1
任意偶阶过完备张量的正则多进分解
将张量分解为秩一分量的和,称为正则多进分解(CP),在文献中已经被研究了很长时间。尽管张量的CP-rank可以远远超过它们的维数(在这种情况下,它们被称为过完备张量),但只有少数算法考虑过完备张量的cp -分解,并且文献中提出的大多数cp -分解算法处理的是秩与张量维数相同阶的更简单的情况。本文考虑任意偶阶对称张量,其特征值假定为正。我们证明了对于一个维数为N的二阶张量,在一些温和的条件下,cp -分解问题等价于求解一个二次方程系统,即使当阶为O(Nd)时也是如此。我们将开发两种不同的算法(一种是凸的,另一种是非凸的)来解决这个二次方程系统。我们的模拟表明,即使秩比张量的维数大得多,特征向量的成功恢复也是可能的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信