Image analysis algorithm for the Anterior Chamber Angle Closure estimation and Van Herick classification

Davide Cassanelli, G. Gibertoni, M. Ferrazza, F. Tramarin, L. Tanga, L. Quaranta, F. Oddone, L. Rovati
{"title":"Image analysis algorithm for the Anterior Chamber Angle Closure estimation and Van Herick classification","authors":"Davide Cassanelli, G. Gibertoni, M. Ferrazza, F. Tramarin, L. Tanga, L. Quaranta, F. Oddone, L. Rovati","doi":"10.1109/IWASI58316.2023.10164450","DOIUrl":null,"url":null,"abstract":"Screening activity is essential for the prevention of diseases such as glaucoma. Concerning primary angle closure glaucoma, the anterior chamber angle can be monitored to evaluate the disease’s progress. Van Herick technique is a non-invasive qualitative approach for estimating the angle aperture. In our previous papers, we presented an automatic instrument able to perform the Van Herick procedure and an Artificial Intelligence approach for estimating the angle aperture. In this work, we propose a deterministic and quantitative vision-based algorithm for the evaluation of the Anterior Chamber Angle aperture. The proposed algorithm allows the estimation of the Van Herick grade from 1 to 4 by computing the ratio value between the Anterior Chamber Depth and the Corneal Thickness. The algorithm is evaluated on an image dataset acquired from patients and classified by expert ophthalmologists. The results show an agreement between clinical classification and the algorithm estimation higher than 65 %, which reaches 100 % for grades 4. Moreover, the algorithm provides the numeric value of the ratio between Anterior Chamber Depth and Corneal Thickness, which can be used as new quantitative information about the angle closure.","PeriodicalId":261827,"journal":{"name":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI58316.2023.10164450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Screening activity is essential for the prevention of diseases such as glaucoma. Concerning primary angle closure glaucoma, the anterior chamber angle can be monitored to evaluate the disease’s progress. Van Herick technique is a non-invasive qualitative approach for estimating the angle aperture. In our previous papers, we presented an automatic instrument able to perform the Van Herick procedure and an Artificial Intelligence approach for estimating the angle aperture. In this work, we propose a deterministic and quantitative vision-based algorithm for the evaluation of the Anterior Chamber Angle aperture. The proposed algorithm allows the estimation of the Van Herick grade from 1 to 4 by computing the ratio value between the Anterior Chamber Depth and the Corneal Thickness. The algorithm is evaluated on an image dataset acquired from patients and classified by expert ophthalmologists. The results show an agreement between clinical classification and the algorithm estimation higher than 65 %, which reaches 100 % for grades 4. Moreover, the algorithm provides the numeric value of the ratio between Anterior Chamber Depth and Corneal Thickness, which can be used as new quantitative information about the angle closure.
图像分析算法的前房角关闭估计和Van Herick分类
筛查活动对于预防青光眼等疾病至关重要。对于原发性闭角型青光眼,可以监测前房角来评估病情进展。Van Herick技术是一种非侵入性的角度孔径定性估计方法。在我们之前的论文中,我们提出了一种能够执行Van Herick过程的自动仪器和一种用于估计角孔径的人工智能方法。在这项工作中,我们提出了一种基于确定性和定量视觉的前房角孔径评估算法。该算法可以通过计算前房深度与角膜厚度之间的比值值来估计Van Herick等级从1到4。该算法在获得的患者图像数据集上进行评估,并由眼科专家进行分类。结果表明,临床分类与算法估计的一致性高于65%,其中4级达到100%。此外,该算法还提供了前房深度与角膜厚度之比的数值,可作为角闭合的新的定量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信