Ordinal measures of the set of finite multisets

Isa Vialard
{"title":"Ordinal measures of the set of finite multisets","authors":"Isa Vialard","doi":"10.48550/arXiv.2302.09881","DOIUrl":null,"url":null,"abstract":"Well-partial orders, and the ordinal invariants used to measure them, are relevant in set theory, program verification, proof theory and many other areas of computer science and mathematics. In this article we focus on one of the most common data structure in programming, the finite multiset of some wpo. There are two natural orders one can define on the set of finite multisets $M(X)$ of a partial order $X$: the multiset embedding and the multiset ordering, for which $M(X)$ remains a wpo when $X$ is. Though the maximal order type of these orders is already known, the other ordinal invariants remain mostly unknown. Our main contributions are expressions to compute compositionally the width of the multiset embedding and the height of the multiset ordering. Furthermore, we provide a new ordinal invariant useful for characterizing the width of the multiset ordering.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.09881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Well-partial orders, and the ordinal invariants used to measure them, are relevant in set theory, program verification, proof theory and many other areas of computer science and mathematics. In this article we focus on one of the most common data structure in programming, the finite multiset of some wpo. There are two natural orders one can define on the set of finite multisets $M(X)$ of a partial order $X$: the multiset embedding and the multiset ordering, for which $M(X)$ remains a wpo when $X$ is. Though the maximal order type of these orders is already known, the other ordinal invariants remain mostly unknown. Our main contributions are expressions to compute compositionally the width of the multiset embedding and the height of the multiset ordering. Furthermore, we provide a new ordinal invariant useful for characterizing the width of the multiset ordering.
有限多集集合的序数测度
偏序,以及用来度量偏序的有序不变量,在集合论、程序验证、证明论以及计算机科学和数学的许多其他领域都是相关的。在本文中,我们将重点讨论编程中最常见的数据结构之一,即某些wpo的有限多集。在偏阶$X$的有限多集集$M(X)$上可以定义两种自然阶:多集嵌入和多集排序,当$X$为时,$M(X)$仍然是wpo。虽然这些阶的最大阶型是已知的,但其他的序不变量大多是未知的。我们的主要贡献是组合计算多集嵌入的宽度和多集排序的高度的表达式。此外,我们还提供了一个新的序不变量,用于描述多集排序的宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信