Mapping global land XCO2 from measurements of GOSAT and SCIAMACHY by using kriging interpolation method

Yingying Jing, Jiancheng Shi, Tianxing Wang
{"title":"Mapping global land XCO2 from measurements of GOSAT and SCIAMACHY by using kriging interpolation method","authors":"Yingying Jing, Jiancheng Shi, Tianxing Wang","doi":"10.1109/IGARSS.2014.6947112","DOIUrl":null,"url":null,"abstract":"In our study, we proposed a gap-filled method based on ordinary kriging to generate a global land distribution map of carbon dioxide (CO<sub>2</sub>) by modeling the spatial correlation structures of column-averaged CO<sub>2</sub> dry air mole fractions (XCO<sub>2</sub>) on the global scale, using a fused data by combining GOSAT and SCIMACHY. The relationship between the distance and semi-variogram of XCO<sub>2</sub> is estimated and modeled by an exponential model with a nugget-effect component. The semi-variogram result indicates that there is a significant spatial correlation within the fused CO<sub>2</sub> data set. The prediction of XCO<sub>2</sub> using semi-variogram model is conducted within 1 degree×1 degree grids over the world. The results reveal that the global distribution of XCO<sub>2</sub> based on kriging method is the most extensive compared with other CO<sub>2</sub> products. Moreover, the monthly map from the kriging approach has less predicted uncertainties, most of which are less than 0.5% of XCO<sub>2</sub> value.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In our study, we proposed a gap-filled method based on ordinary kriging to generate a global land distribution map of carbon dioxide (CO2) by modeling the spatial correlation structures of column-averaged CO2 dry air mole fractions (XCO2) on the global scale, using a fused data by combining GOSAT and SCIMACHY. The relationship between the distance and semi-variogram of XCO2 is estimated and modeled by an exponential model with a nugget-effect component. The semi-variogram result indicates that there is a significant spatial correlation within the fused CO2 data set. The prediction of XCO2 using semi-variogram model is conducted within 1 degree×1 degree grids over the world. The results reveal that the global distribution of XCO2 based on kriging method is the most extensive compared with other CO2 products. Moreover, the monthly map from the kriging approach has less predicted uncertainties, most of which are less than 0.5% of XCO2 value.
利用kriging插值方法从GOSAT和SCIAMACHY测量数据绘制全球陆地XCO2
在本研究中,我们提出了一种基于普通克里格的空白填充方法,通过模拟全球尺度上柱平均CO2干空气摩尔分数(XCO2)的空间相关结构,利用GOSAT和SCIMACHY相结合的融合数据生成二氧化碳(CO2)的全球陆地分布图。对XCO2的距离与半变异函数之间的关系进行了估计,并采用含金块效应分量的指数模型进行了建模。半变异函数结果表明,融合后的CO2数据集存在显著的空间相关性。利用半变差模型对XCO2进行了全球范围内1 degree×1度网格的预测。结果表明,与其他CO2产品相比,基于克里格法的XCO2全球分布最为广泛。此外,克里格方法的月图具有较小的预测不确定性,其中大多数小于XCO2值的0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信