A recurrent neural network for short-term load forecasting

H. Mori, T. Ogasawara
{"title":"A recurrent neural network for short-term load forecasting","authors":"H. Mori, T. Ogasawara","doi":"10.1109/ANN.1993.264315","DOIUrl":null,"url":null,"abstract":"This paper proposes a recurrent neural network based approach to short-term load forecasting in power systems. Recurrent neural networks in multilayer perceptrons have an advantage that the context layer is able to cope with historical data. As a result, it is expected that recurrent neural networks give better solutions than the conventional feedforward multilayer perceptrons in term of accuracy. Also, the differential equation form of the time series is utilized to deal with the nonstationarity of the daily load time series. Furthermore, this paper proposes the diffusion learning method for determining weights between units in a recurrent network. The method is capable of escaping from local minima with stochastic noise. A comparison is made between conventional multilayer perceptrons and the proposed method for actual data.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper proposes a recurrent neural network based approach to short-term load forecasting in power systems. Recurrent neural networks in multilayer perceptrons have an advantage that the context layer is able to cope with historical data. As a result, it is expected that recurrent neural networks give better solutions than the conventional feedforward multilayer perceptrons in term of accuracy. Also, the differential equation form of the time series is utilized to deal with the nonstationarity of the daily load time series. Furthermore, this paper proposes the diffusion learning method for determining weights between units in a recurrent network. The method is capable of escaping from local minima with stochastic noise. A comparison is made between conventional multilayer perceptrons and the proposed method for actual data.<>
短期负荷预测的递归神经网络
提出了一种基于递归神经网络的电力系统短期负荷预测方法。多层感知器中的递归神经网络具有上下文层能够处理历史数据的优势。因此,期望递归神经网络在精度方面比传统的前馈多层感知器提供更好的解决方案。同时,利用时间序列的微分方程形式处理日负荷时间序列的非平稳性。在此基础上,提出了一种确定循环网络单元间权值的扩散学习方法。该方法能够摆脱随机噪声下的局部极小值。将传统的多层感知器与本文提出的方法在实际数据上进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信