Cycle-Spinning GAN for Raindrop Removal from Images

Ülkü Uzun, A. Temi̇zel
{"title":"Cycle-Spinning GAN for Raindrop Removal from Images","authors":"Ülkü Uzun, A. Temi̇zel","doi":"10.1109/AVSS.2019.8909824","DOIUrl":null,"url":null,"abstract":"Weather events such as rain, snow, and fog degrade the quality of images taken under these conditions. Enhancement of such images is critical for intelligent transport and outdoor surveillance systems. Generative Adversarial Networks (GAN) based methods have been shown to be promising for enhancing these images in recent years. In this study, we adapt the cycle-spinning technique to GAN for removal of raindrops. The experimental evaluation of the proposed method shows that the performance is improved in terms of reference-based metrics (SSIM and PSNR). In addition, the approach also results in higher object detection performance in terms of mean average precision (mAP) metric when applied before the detection process.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Weather events such as rain, snow, and fog degrade the quality of images taken under these conditions. Enhancement of such images is critical for intelligent transport and outdoor surveillance systems. Generative Adversarial Networks (GAN) based methods have been shown to be promising for enhancing these images in recent years. In this study, we adapt the cycle-spinning technique to GAN for removal of raindrops. The experimental evaluation of the proposed method shows that the performance is improved in terms of reference-based metrics (SSIM and PSNR). In addition, the approach also results in higher object detection performance in terms of mean average precision (mAP) metric when applied before the detection process.
用于图像雨滴去除的循环旋转GAN
雨、雪和雾等天气事件会降低在这些条件下拍摄的图像的质量。增强此类图像对智能交通和户外监控系统至关重要。近年来,基于生成对抗网络(GAN)的方法已被证明有希望增强这些图像。在这项研究中,我们将循环纺丝技术应用于氮化镓去除雨滴。实验结果表明,该方法在基于参考的指标(SSIM和PSNR)方面的性能得到了提高。此外,当在检测过程之前应用该方法时,在平均平均精度(mAP)度量方面也可以获得更高的目标检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信