Partitioned Real-Time NAND Flash Storage

Katherine Missimer, R. West
{"title":"Partitioned Real-Time NAND Flash Storage","authors":"Katherine Missimer, R. West","doi":"10.1109/RTSS.2018.00036","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of guaranteeing performance and predictability of NAND flash memory in a real-time storage system. Our approach implements a new flash translation layer scheme that exploits internal parallelism within solid state storage devices. We describe the Partitioned Real-Time Flash Translation Layer (PaRT-FTL), which splits a set of flash chips into separate read and write sets. This ensures reads and writes to separate chips proceed in parallel. However, PaRT-FTL is also able to rebuild the data for a read request from a flash chip that is busy servicing a write request or performing garbage collection. Consequently, reads are never blocked by writes or storage space reclamation. PaRT-FTL is compared to previous real-time approaches including scheduling, over-provisioning and partial garbage collection. We show that by isolating read and write requests using encoding techniques, PaRT-FTL provides better latency guarantees for real-time applications.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper addresses the problem of guaranteeing performance and predictability of NAND flash memory in a real-time storage system. Our approach implements a new flash translation layer scheme that exploits internal parallelism within solid state storage devices. We describe the Partitioned Real-Time Flash Translation Layer (PaRT-FTL), which splits a set of flash chips into separate read and write sets. This ensures reads and writes to separate chips proceed in parallel. However, PaRT-FTL is also able to rebuild the data for a read request from a flash chip that is busy servicing a write request or performing garbage collection. Consequently, reads are never blocked by writes or storage space reclamation. PaRT-FTL is compared to previous real-time approaches including scheduling, over-provisioning and partial garbage collection. We show that by isolating read and write requests using encoding techniques, PaRT-FTL provides better latency guarantees for real-time applications.
分区实时NAND闪存
本文研究了实时存储系统中NAND闪存的性能和可预测性的保证问题。我们的方法实现了一种新的闪存转换层方案,利用了固态存储设备内部的并行性。我们描述了分区实时闪存转换层(PaRT-FTL),它将一组闪存芯片分割成独立的读写集。这确保了对不同芯片的读写并行进行。但是,PaRT-FTL还能够为来自闪存芯片的读请求重建数据,而闪存芯片正忙于处理写请求或执行垃圾收集。因此,读不会因为写或存储空间回收而阻塞。PaRT-FTL与之前的实时方法进行了比较,包括调度、过度供应和部分垃圾收集。我们表明,通过使用编码技术隔离读写请求,PaRT-FTL为实时应用程序提供了更好的延迟保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信