Mean estimation based on phi-mixing sequences

E. Chen, W. Kelton
{"title":"Mean estimation based on phi-mixing sequences","authors":"E. Chen, W. Kelton","doi":"10.1109/SIMSYM.2000.844921","DOIUrl":null,"url":null,"abstract":"This paper discusses the implementation of two sequential procedures to construct confidence intervals for a simulation estimator of the steady-state mean of a stochastic process. Our quasi-independent-mean (QIM) methods attempt to obtain i.i.d. samples. We show that our sequential procedures give valid confidence intervals. The two assumptions required are that the stochastic-process output sequence is continuous and satisfies the /spl phi/-mixing conditions. The algorithm dynamically increases the simulation run length so that the mean estimate satisfies a pre-specified precision requirement.","PeriodicalId":361153,"journal":{"name":"Proceedings 33rd Annual Simulation Symposium (SS 2000)","volume":"15 9-10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 33rd Annual Simulation Symposium (SS 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIMSYM.2000.844921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper discusses the implementation of two sequential procedures to construct confidence intervals for a simulation estimator of the steady-state mean of a stochastic process. Our quasi-independent-mean (QIM) methods attempt to obtain i.i.d. samples. We show that our sequential procedures give valid confidence intervals. The two assumptions required are that the stochastic-process output sequence is continuous and satisfies the /spl phi/-mixing conditions. The algorithm dynamically increases the simulation run length so that the mean estimate satisfies a pre-specified precision requirement.
基于phi-mix序列的均值估计
本文讨论了构造随机过程稳态均值模拟估计的置信区间的两个顺序过程的实现。我们的准独立均值(QIM)方法试图获得i.i.d样本。我们证明我们的顺序过程给出了有效的置信区间。所要求的两个假设是,随机过程输出序列是连续的,并且满足/spl phi/-混合条件。该算法动态地增加仿真运行长度,使平均估计满足预先设定的精度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信