{"title":"Strategies of Multi-Step-ahead Forecasting for Chaotic Time Series using Autoencoder and LSTM Neural Networks: A Comparative Study","authors":"Ngoc Phien Nguyen, T. Duong, Platos Jan","doi":"10.1145/3582177.3582187","DOIUrl":null,"url":null,"abstract":"There has been a lot of research on the use of deep neural networks in forecasting time series and chaotic time series data. However, there exist very few works on multi-step ahead forecasting in chaotic time series using deep neural networks. Several strategies that deal with multi-step-ahead forecasting problem have been proposed in literature: recursive (or iterated) strategy, direct strategy, a combination of both the recursive and direct strategies, called DirRec, the Multiple-Input Multiple-Output (MIMO) strategy, and the fifth strategy, called DirMO which combines Direct and MIMO strategies. This paper aims to propose a new deep learning model for chaotic time series forecasting: LSTM-based stacked autoencoder and answer the research question: which strategy for multi-step ahead forecasting using LSTM-based stacked autoencoder yields the best performance for chaotic time series. We evaluated and compared in terms of two performance criteria: Root-Mean-Square Error (RMSE) and Mean-Absolute-Percentage Error (MAPE). The experimental results on synthetic and real-world chaotic time series datasets reveal that MIMO strategy provides the best predictive accuracy for chaotic time series forecasting using LSTM-based stacked autoencoder.","PeriodicalId":170327,"journal":{"name":"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 5th International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582177.3582187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
There has been a lot of research on the use of deep neural networks in forecasting time series and chaotic time series data. However, there exist very few works on multi-step ahead forecasting in chaotic time series using deep neural networks. Several strategies that deal with multi-step-ahead forecasting problem have been proposed in literature: recursive (or iterated) strategy, direct strategy, a combination of both the recursive and direct strategies, called DirRec, the Multiple-Input Multiple-Output (MIMO) strategy, and the fifth strategy, called DirMO which combines Direct and MIMO strategies. This paper aims to propose a new deep learning model for chaotic time series forecasting: LSTM-based stacked autoencoder and answer the research question: which strategy for multi-step ahead forecasting using LSTM-based stacked autoencoder yields the best performance for chaotic time series. We evaluated and compared in terms of two performance criteria: Root-Mean-Square Error (RMSE) and Mean-Absolute-Percentage Error (MAPE). The experimental results on synthetic and real-world chaotic time series datasets reveal that MIMO strategy provides the best predictive accuracy for chaotic time series forecasting using LSTM-based stacked autoencoder.