Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal
{"title":"PProCRC: Probabilistic Collaboration of Image Patches for Fine-grained Classification","authors":"Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal","doi":"10.1109/IVCNZ51579.2020.9290537","DOIUrl":null,"url":null,"abstract":"We present a conditional probabilistic framework for collaborative representation of image patches. It incorporates background compensation and outlier patch suppression into the main formulation itself, thus doing away with the need for pre-processing steps to handle the same. A closed form non-iterative solution of the cost function is derived. The proposed method (PProCRC) outperforms earlier CRC formulations: patch based (PCRC, GP-CRC) as well as the state-of-the-art probabilistic (ProCRC and EProCRC) on three fine-grained species recognition datasets (Oxford Flowers, Oxford-IIIT Pets and CUB Birds) using two CNN backbones (Vgg-19 and ResNet-50).","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a conditional probabilistic framework for collaborative representation of image patches. It incorporates background compensation and outlier patch suppression into the main formulation itself, thus doing away with the need for pre-processing steps to handle the same. A closed form non-iterative solution of the cost function is derived. The proposed method (PProCRC) outperforms earlier CRC formulations: patch based (PCRC, GP-CRC) as well as the state-of-the-art probabilistic (ProCRC and EProCRC) on three fine-grained species recognition datasets (Oxford Flowers, Oxford-IIIT Pets and CUB Birds) using two CNN backbones (Vgg-19 and ResNet-50).