A self-driven microfluidic chip through a rapid surface modification of PDMS and its application for digital loop-mediated amplification (LAMP)

Yu-Dong Ma, Wen-Hsin Chang, Chih-Hung Wang, Shih‐Yuan Liu, Wen-Hsiang Yen, K. Luo, H. You, Jiunn-Jong Wu, Mel S. Lee, Gwo-Bin Lee
{"title":"A self-driven microfluidic chip through a rapid surface modification of PDMS and its application for digital loop-mediated amplification (LAMP)","authors":"Yu-Dong Ma, Wen-Hsin Chang, Chih-Hung Wang, Shih‐Yuan Liu, Wen-Hsiang Yen, K. Luo, H. You, Jiunn-Jong Wu, Mel S. Lee, Gwo-Bin Lee","doi":"10.1109/NEMS.2016.7758187","DOIUrl":null,"url":null,"abstract":"Digital loop-mediated amplification (LAMP) is an isothermal, quantitative DNA amplification approach which has high sensitivity and specificity and could be used to analyze extremely low amount of DNA within a short period of time. In this study, an integrated self-driven microfluidic chip was proposed herein for performing a digital LAMP process for vancomycin-resistant Enterococcus (VRE) diagnosis. The entire bacterial diagnosis could be automatically performed by capillary forces through the new polydimethylsiloxane (PDMS) surface treatment without using external pumps. Moreover, digitized droplets could be separated from each other by normally-close valves such that it could be quantitated. The contact angle of the treated PDMS surface was measured to be only 24°, which was the lowest value in literatures. This is the first time that a rapid (within 1 hour), simple, and hydrophilic PDMS surface modification method has been reported, which could be used in self-driven microfluidic devices for digital LAMP. This device may become a promising tool for clinical diagnosis and point-of-care applications.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Digital loop-mediated amplification (LAMP) is an isothermal, quantitative DNA amplification approach which has high sensitivity and specificity and could be used to analyze extremely low amount of DNA within a short period of time. In this study, an integrated self-driven microfluidic chip was proposed herein for performing a digital LAMP process for vancomycin-resistant Enterococcus (VRE) diagnosis. The entire bacterial diagnosis could be automatically performed by capillary forces through the new polydimethylsiloxane (PDMS) surface treatment without using external pumps. Moreover, digitized droplets could be separated from each other by normally-close valves such that it could be quantitated. The contact angle of the treated PDMS surface was measured to be only 24°, which was the lowest value in literatures. This is the first time that a rapid (within 1 hour), simple, and hydrophilic PDMS surface modification method has been reported, which could be used in self-driven microfluidic devices for digital LAMP. This device may become a promising tool for clinical diagnosis and point-of-care applications.
基于PDMS表面快速修饰的自驱动微流控芯片及其在数字环路介导放大(LAMP)中的应用
数字环介导扩增(LAMP)是一种等温、定量的DNA扩增方法,具有很高的灵敏度和特异性,可以在短时间内分析极少量的DNA。本研究提出了一种集成的自驱动微流控芯片,用于万古霉素耐药肠球菌(VRE)诊断的数字LAMP过程。通过新型聚二甲基硅氧烷(PDMS)表面处理,整个细菌诊断可以通过毛细管力自动完成,而无需使用外部泵。此外,数字化的液滴可以通过正常关闭的阀门相互分离,从而可以量化。处理后的PDMS表面接触角仅为24°,为文献中最低。这是首次报道一种快速(1小时内)、简单、亲水的PDMS表面改性方法,可用于数字LAMP自驱动微流控装置。该装置可能成为临床诊断和护理点应用的有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信