A Note on 4-Dimensional 2-Crossed Modules

Koray Yılmaz
{"title":"A Note on 4-Dimensional 2-Crossed Modules","authors":"Koray Yılmaz","doi":"10.53570/jnt.1208633","DOIUrl":null,"url":null,"abstract":"The study presents the direct product of two objects in the category of 4-dimensional 2-crossed modules. The structures of the domain, kernel, image, and codomain can be related using isomorphism theorems by defining the kernel and image of a morphism in a category. It then establishes the kernel and image of a morphism in the category of 4-dimensional 2-crossed modules to apply isomorphism theorems. These isomorphism theorems provide a powerful tool to understand the properties of this category. Moreover, isomorphism theorems in 4-dimensional 2-crossed modules allow us to establish connections between different algebraic structures and simplify complicated computations. Lastly, the present research inquires whether additional studies should be conducted.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"336 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1208633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents the direct product of two objects in the category of 4-dimensional 2-crossed modules. The structures of the domain, kernel, image, and codomain can be related using isomorphism theorems by defining the kernel and image of a morphism in a category. It then establishes the kernel and image of a morphism in the category of 4-dimensional 2-crossed modules to apply isomorphism theorems. These isomorphism theorems provide a powerful tool to understand the properties of this category. Moreover, isomorphism theorems in 4-dimensional 2-crossed modules allow us to establish connections between different algebraic structures and simplify complicated computations. Lastly, the present research inquires whether additional studies should be conducted.
关于四维2交叉模的一个注记
研究了四维二维交叉模类中两个对象的直接乘积。定义域、核、象和上域的结构可以用同构定理联系起来,通过定义范畴中一个态射的核和象。然后在4维2交叉模的范畴中建立态射的核和象,应用同构定理。这些同构定理为理解这一范畴的性质提供了一个强大的工具。此外,四维2交叉模块中的同构定理使我们能够建立不同代数结构之间的联系,简化复杂的计算。最后,本研究探讨了是否需要进行更多的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信