A joint multi-scale convolutional network for fully automatic segmentation of the left ventricle

Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning
{"title":"A joint multi-scale convolutional network for fully automatic segmentation of the left ventricle","authors":"Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning","doi":"10.1109/ICIP.2017.8296855","DOIUrl":null,"url":null,"abstract":"Left ventricle (LV) segmentation is crucial for quantitative analysis of the cardiac contractile function. In this paper, we propose a joint multi-scale convolutional neural network to fully automatically segment the LV. Our method adopts two kinds of multi-scale features of cardiac magnetic resonance (CMR) images, including multi-scale features directly extracted from CMR images with different scales and multi-scale features constructed by intermediate layers of standard CNN architecture. We take advantage of these two strategies and fuse their prediction results to produce more accurate segmentation results. Qualitative results demonstrate the effectiveness and robustness of our method, and quantitative evaluation indicates our method achieves LV segmentation with higher accuracy than state-of-the-art approaches.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Left ventricle (LV) segmentation is crucial for quantitative analysis of the cardiac contractile function. In this paper, we propose a joint multi-scale convolutional neural network to fully automatically segment the LV. Our method adopts two kinds of multi-scale features of cardiac magnetic resonance (CMR) images, including multi-scale features directly extracted from CMR images with different scales and multi-scale features constructed by intermediate layers of standard CNN architecture. We take advantage of these two strategies and fuse their prediction results to produce more accurate segmentation results. Qualitative results demonstrate the effectiveness and robustness of our method, and quantitative evaluation indicates our method achieves LV segmentation with higher accuracy than state-of-the-art approaches.
一种联合多尺度卷积网络用于左心室的全自动分割
左心室分割是定量分析心脏收缩功能的关键。本文提出了一种联合多尺度卷积神经网络来实现LV的全自动分割。我们的方法采用了两种心脏磁共振(CMR)图像的多尺度特征,包括直接从不同尺度的CMR图像中提取的多尺度特征和由标准CNN架构中间层构建的多尺度特征。我们利用这两种策略并融合它们的预测结果来产生更准确的分割结果。定性结果证明了我们的方法的有效性和鲁棒性,定量评价表明我们的方法比最先进的方法实现了更高的LV分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信