A Knowledge Structuring Technique for Image Classification

Le Dong, E. Izquierdo
{"title":"A Knowledge Structuring Technique for Image Classification","authors":"Le Dong, E. Izquierdo","doi":"10.1109/ICIP.2007.4379600","DOIUrl":null,"url":null,"abstract":"A system for image analysis and classification based on a knowledge structuring technique is presented. The knowledge structuring technique automatically creates a relevance map from salient areas of natural images. It also derives a set of well-structured representations from low-level description to drive the final classification. The backbone of the knowledge structuring technique is a distribution mapping strategy involving two basic modules: structured low-level feature extraction using convolution neural network and a topology representation module based on a growing cell structure network. Classification is achieved by simulating high-level top-down visual information perception and classifying using an incremental Bayesian parameter estimation method. The proposed modular system architecture offers straightforward expansion to include user relevance feedback, contextual input, and multimodal information if available.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A system for image analysis and classification based on a knowledge structuring technique is presented. The knowledge structuring technique automatically creates a relevance map from salient areas of natural images. It also derives a set of well-structured representations from low-level description to drive the final classification. The backbone of the knowledge structuring technique is a distribution mapping strategy involving two basic modules: structured low-level feature extraction using convolution neural network and a topology representation module based on a growing cell structure network. Classification is achieved by simulating high-level top-down visual information perception and classifying using an incremental Bayesian parameter estimation method. The proposed modular system architecture offers straightforward expansion to include user relevance feedback, contextual input, and multimodal information if available.
一种用于图像分类的知识结构技术
提出了一种基于知识结构技术的图像分析与分类系统。知识结构技术从自然图像的显著区域自动生成关联图。它还从低级描述中派生出一组结构良好的表示,以驱动最终的分类。知识结构技术的核心是分布映射策略,涉及两个基本模块:使用卷积神经网络的结构化低层特征提取和基于生长细胞结构网络的拓扑表示模块。通过模拟高层自上而下的视觉信息感知,并使用增量贝叶斯参数估计方法进行分类,实现分类。所提出的模块化系统架构提供了直接的扩展,以包括用户相关反馈、上下文输入和多模式信息(如果可用)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信