Vehicle Detection and Tracking Using Kalman Filter Over Aerial Images

Asifa Mehmood Qureshi, A. Jalal
{"title":"Vehicle Detection and Tracking Using Kalman Filter Over Aerial Images","authors":"Asifa Mehmood Qureshi, A. Jalal","doi":"10.1109/ICACS55311.2023.10089701","DOIUrl":null,"url":null,"abstract":"For intelligent transportation systems (ITSs) and planning that makes use of exact location intelligence, accurate vehicle classification, and tracking are topics that are becoming more and more vital. This paper presents a model for the detection and tracking of vehicles in roundabout aerial images. The detection is being done using a combination of blob detection and improved occlusion handling technique based on geometrical points of the vehicle model. The detected vehicles are assigned ID based on IoU matching, similarity matching, and centroid of the vehicle bounding box. The moving cars are then passed onto the tracking algorithm which implements the Kalman filter and vehicle re-identification methods. The trajectories of each detected vehicle are derived. The preciseness of the detection and tracking algorithms are 87% and 90% respectively. The experimental findings showed that the proposed detection and tracking model had consistent results for complex environments having heavy traffic flow conditions.","PeriodicalId":357522,"journal":{"name":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS55311.2023.10089701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For intelligent transportation systems (ITSs) and planning that makes use of exact location intelligence, accurate vehicle classification, and tracking are topics that are becoming more and more vital. This paper presents a model for the detection and tracking of vehicles in roundabout aerial images. The detection is being done using a combination of blob detection and improved occlusion handling technique based on geometrical points of the vehicle model. The detected vehicles are assigned ID based on IoU matching, similarity matching, and centroid of the vehicle bounding box. The moving cars are then passed onto the tracking algorithm which implements the Kalman filter and vehicle re-identification methods. The trajectories of each detected vehicle are derived. The preciseness of the detection and tracking algorithms are 87% and 90% respectively. The experimental findings showed that the proposed detection and tracking model had consistent results for complex environments having heavy traffic flow conditions.
基于卡尔曼滤波的航拍图像车辆检测与跟踪
对于利用精确位置智能的智能交通系统(ITSs)和规划,准确的车辆分类和跟踪是越来越重要的主题。提出了一种环岛航拍图像中车辆的检测与跟踪模型。基于车辆模型的几何点,采用blob检测和改进的遮挡处理技术相结合的方法进行检测。根据IoU匹配、相似性匹配和车辆边界框质心为被检测车辆分配ID。然后将运动的车辆传递给跟踪算法,该算法实现了卡尔曼滤波和车辆再识别方法。导出了每个被探测飞行器的轨迹。检测和跟踪算法的准确率分别为87%和90%。实验结果表明,所提出的检测和跟踪模型对于复杂的交通流环境具有一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信