LODatio: using a schema-level index to support users infinding relevant sources of linked data

Thomas Gottron, A. Scherp, Bastian Krayer, Arne Peters
{"title":"LODatio: using a schema-level index to support users infinding relevant sources of linked data","authors":"Thomas Gottron, A. Scherp, Bastian Krayer, Arne Peters","doi":"10.1145/2479832.2479841","DOIUrl":null,"url":null,"abstract":"The Linked Open Data (LOD) cloud provides a vast amount of heterogeneous data, distributed over numerous data sources. This makes it difficult to find those data sources in the cloud which are relevant for a given information need. Existing search engines for the Semantic Web focus on instance-oriented information needs, i. e., searching for specific RDF instances or literals and exploring the search results. However, they do not address the question of finding linked data sources relevant to a schema-oriented information need, i. e., queries based on triple patterns relating to a specific combination of RDF types and/or properties. In this paper, we present the semantic search system LODatio leveraging a schema-level index for finding sources of Linked Data relevant to a schema-oriented information need. Beyond its capability to retrieve relevant data sources, LODatio actively supports the user in his schema-oriented search tasks. To this end, it provides ranked result lists of relevant data sources together with example snippets and an estimation of the result set size. Furthermore, LODatio provides support for novel features in semantic search such as recommending alternative queries in order to refine or broaden the result set.","PeriodicalId":388497,"journal":{"name":"Proceedings of the seventh international conference on Knowledge capture","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the seventh international conference on Knowledge capture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2479832.2479841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The Linked Open Data (LOD) cloud provides a vast amount of heterogeneous data, distributed over numerous data sources. This makes it difficult to find those data sources in the cloud which are relevant for a given information need. Existing search engines for the Semantic Web focus on instance-oriented information needs, i. e., searching for specific RDF instances or literals and exploring the search results. However, they do not address the question of finding linked data sources relevant to a schema-oriented information need, i. e., queries based on triple patterns relating to a specific combination of RDF types and/or properties. In this paper, we present the semantic search system LODatio leveraging a schema-level index for finding sources of Linked Data relevant to a schema-oriented information need. Beyond its capability to retrieve relevant data sources, LODatio actively supports the user in his schema-oriented search tasks. To this end, it provides ranked result lists of relevant data sources together with example snippets and an estimation of the result set size. Furthermore, LODatio provides support for novel features in semantic search such as recommending alternative queries in order to refine or broaden the result set.
LODatio:使用模式级索引来支持用户查找关联数据的相关来源
链接开放数据(LOD)云提供了分布在众多数据源上的大量异构数据。这使得很难在云中找到与给定信息需求相关的数据源。语义Web的现有搜索引擎主要关注面向实例的信息需求,即搜索特定的RDF实例或文字并探索搜索结果。然而,它们没有解决查找与面向模式的信息需求相关的链接数据源的问题,即,基于与RDF类型和/或属性的特定组合相关的三重模式的查询。在本文中,我们提出了语义搜索系统LODatio,该系统利用模式级索引来查找与面向模式的信息需求相关的关联数据源。除了检索相关数据源的能力之外,LODatio还积极支持用户进行面向模式的搜索任务。为此,它提供了相关数据源的排序结果列表,以及示例片段和对结果集大小的估计。此外,LODatio还支持语义搜索中的新特性,例如推荐替代查询,以改进或扩展结果集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信