Role of Candidate Key in Metadata for Data Analysis

P. Pradhan
{"title":"Role of Candidate Key in Metadata for Data Analysis","authors":"P. Pradhan","doi":"10.4018/ijbdia.318411","DOIUrl":null,"url":null,"abstract":"This proposed research paper focuses on the candidate key to generate a frequent pattern from the large dataset. The functional dependency and candidate key rolling are major activities for creating and collecting the exact pattern to support the decision support system. The functional dependency helps a decision support system to assemble metadata to resolve the uncertainty, unstructured, and unordered data. The large data sets (BigData) can be reassembled through Java programming faster and better by applying combinational algebra. The candidate key is directly proportional to the set of metadata. The large data sets are lively connected to the customer, manufacturer, vendor, order, and product key correctly at the right time. Therefore, the computational mechanism has to develop through the candidate key for better and faster data analysis. The knowledge and decision pattern can be acquired through mapping and integration of candidate key management.","PeriodicalId":398232,"journal":{"name":"Int. J. Big Data Intell. Appl.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Big Data Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijbdia.318411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This proposed research paper focuses on the candidate key to generate a frequent pattern from the large dataset. The functional dependency and candidate key rolling are major activities for creating and collecting the exact pattern to support the decision support system. The functional dependency helps a decision support system to assemble metadata to resolve the uncertainty, unstructured, and unordered data. The large data sets (BigData) can be reassembled through Java programming faster and better by applying combinational algebra. The candidate key is directly proportional to the set of metadata. The large data sets are lively connected to the customer, manufacturer, vendor, order, and product key correctly at the right time. Therefore, the computational mechanism has to develop through the candidate key for better and faster data analysis. The knowledge and decision pattern can be acquired through mapping and integration of candidate key management.
候选键在数据分析元数据中的作用
本文的研究重点是在大数据集中使用候选键生成频繁模式。功能依赖和候选键滚动是创建和收集支持决策支持系统的确切模式的主要活动。功能依赖关系帮助决策支持系统组装元数据,以解决不确定、非结构化和无序的数据。通过应用组合代数,可以通过Java编程更快更好地重新组装大数据集(BigData)。候选键与元数据集成正比。大型数据集在正确的时间与客户、制造商、供应商、订单和产品密钥实时连接。因此,为了更好更快地分析数据,必须通过候选键来发展计算机制。通过对候选密钥管理的映射和集成,可以获得知识和决策模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信