Genetic Algorithms Optimization of a Reinforcement Learning-based Controller for Vertical Landing Rocket Case

Diva Kartika Larasati, Larasmoyo Nugroho, S. Wijaya, R. Andiarti, Rini Akmeliawati, P. Prajitno, Ery Fitrianingsih
{"title":"Genetic Algorithms Optimization of a Reinforcement Learning-based Controller for Vertical Landing Rocket Case","authors":"Diva Kartika Larasati, Larasmoyo Nugroho, S. Wijaya, R. Andiarti, Rini Akmeliawati, P. Prajitno, Ery Fitrianingsih","doi":"10.1109/ICARES56907.2022.9992304","DOIUrl":null,"url":null,"abstract":"A reward function in reinforcement learning is the formalization of the objective. Finding the ideal reward function is a challenge, that needs a search strategy to be constructed. Genetic Algorithm is a suitable approach for reward function search due to its thoroughness. The Deep Deterministic Policy Gradient (DDPG) algorithm, which is the focus of this research, is a reinforcement learning-based controller which performances are improved after the Genetic Algorithms optimizes the agent's reward functions. The optimized controller results in narrower missed distance and lower landing velocity compared to referenced DDPG controller, and significantly less fuel consumption compared to PID.","PeriodicalId":252801,"journal":{"name":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","volume":"46 Suppl 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARES56907.2022.9992304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A reward function in reinforcement learning is the formalization of the objective. Finding the ideal reward function is a challenge, that needs a search strategy to be constructed. Genetic Algorithm is a suitable approach for reward function search due to its thoroughness. The Deep Deterministic Policy Gradient (DDPG) algorithm, which is the focus of this research, is a reinforcement learning-based controller which performances are improved after the Genetic Algorithms optimizes the agent's reward functions. The optimized controller results in narrower missed distance and lower landing velocity compared to referenced DDPG controller, and significantly less fuel consumption compared to PID.
基于遗传算法的火箭垂直降落案例强化学习控制器优化
强化学习中的奖励函数是目标的形式化。寻找理想的奖励函数是一个挑战,需要构造一个搜索策略。遗传算法是一种完备的奖励函数搜索方法。本文研究的重点是深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法,它是一种基于强化学习的控制器,通过遗传算法对智能体的奖励函数进行优化,从而提高控制器的性能。与参考的DDPG控制器相比,优化后的控制器可以实现更小的脱靶距离和更低的着陆速度,并且与PID控制器相比可以显著降低燃油消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信