Diffusion Models for Social Analysis, Influence and Learning

N. Badr, Hatem Abdel-Kader, Asmaa Ali
{"title":"Diffusion Models for Social Analysis, Influence and Learning","authors":"N. Badr, Hatem Abdel-Kader, Asmaa Ali","doi":"10.21608/ijci.2021.207863","DOIUrl":null,"url":null,"abstract":"Social networks are complicated by millions of users interacting and creating massive amounts of content. The problem is that any unobservable changes in network structure can result in dramatic swings in the spread of new ideas and behaviors between users. This diffusion process leads to numerous latent information that can be extracted, analyzed, and used in different applications, including market forecasting, rumor control, disease modeling, and opinion monitoring. Furthermore, mining social media big data helps to ease tracking propagated data and trends across the world. In this article, we address the study of diffusion models in social networks. We discuss three significant categories of diffusion models: contagion, social influence, and social learning models with different enhancements applied to improve performance. The aim is to study diffusion models in social networks to effectively understand how innovation and information spread over individuals and predict future trends. Also, identifying the most influential users in social networks is addressed to help spread knowledge faster and prevent harmful content like viruses or bad online behavior from spreading. Keywords—Social Network, Information Diffusion, social influence, Predictive Models, Contusion.","PeriodicalId":137729,"journal":{"name":"IJCI. International Journal of Computers and Information","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCI. International Journal of Computers and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijci.2021.207863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social networks are complicated by millions of users interacting and creating massive amounts of content. The problem is that any unobservable changes in network structure can result in dramatic swings in the spread of new ideas and behaviors between users. This diffusion process leads to numerous latent information that can be extracted, analyzed, and used in different applications, including market forecasting, rumor control, disease modeling, and opinion monitoring. Furthermore, mining social media big data helps to ease tracking propagated data and trends across the world. In this article, we address the study of diffusion models in social networks. We discuss three significant categories of diffusion models: contagion, social influence, and social learning models with different enhancements applied to improve performance. The aim is to study diffusion models in social networks to effectively understand how innovation and information spread over individuals and predict future trends. Also, identifying the most influential users in social networks is addressed to help spread knowledge faster and prevent harmful content like viruses or bad online behavior from spreading. Keywords—Social Network, Information Diffusion, social influence, Predictive Models, Contusion.
社会分析、影响和学习的扩散模型
社交网络因数百万用户互动和创造大量内容而变得复杂。问题在于,网络结构中任何不可观察到的变化都可能导致新思想和新行为在用户之间传播的剧烈波动。这种扩散过程产生了大量的潜在信息,这些信息可以被提取、分析并用于不同的应用,包括市场预测、谣言控制、疾病建模和舆论监测。此外,挖掘社交媒体大数据有助于简化对全球传播数据和趋势的跟踪。在这篇文章中,我们讨论了社会网络中扩散模型的研究。我们讨论了三种重要的扩散模型:传染、社会影响和社会学习模型,并采用不同的增强方法来提高绩效。其目的是研究社会网络中的扩散模型,以有效地了解创新和信息如何在个体中传播,并预测未来的趋势。此外,确定社交网络中最具影响力的用户有助于更快地传播知识,防止病毒或不良在线行为等有害内容的传播。关键词:社会网络,信息扩散,社会影响,预测模型,混乱
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信