A clinical decision support framework for automatic disease diagnoses

C. Comito, Agostino Forestiero, Giuseppe Papuzzo
{"title":"A clinical decision support framework for automatic disease diagnoses","authors":"C. Comito, Agostino Forestiero, Giuseppe Papuzzo","doi":"10.1145/3341161.3343509","DOIUrl":null,"url":null,"abstract":"Detecting diseases at early stage can help to overcome and treat them accurately. Identifying the appropriate treatment depends on the method that is used in diagnosing the diseases. A Clinical Decision Support System (CDS) can greatly help in identifying diseases and methods of treatment. In this paper we propose a CDS framework that can integrate heterogeneous health data from different sources, such as laboratory test results, basic information of patients, and health records. Using the electronic health medical data so collected, innovative machine learning and deep learning approaches are employed to implement a set of services to recommend a list of diseases and thus assist physicians in diagnosing or treating their patients health issues more efficiently.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"69 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3343509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Detecting diseases at early stage can help to overcome and treat them accurately. Identifying the appropriate treatment depends on the method that is used in diagnosing the diseases. A Clinical Decision Support System (CDS) can greatly help in identifying diseases and methods of treatment. In this paper we propose a CDS framework that can integrate heterogeneous health data from different sources, such as laboratory test results, basic information of patients, and health records. Using the electronic health medical data so collected, innovative machine learning and deep learning approaches are employed to implement a set of services to recommend a list of diseases and thus assist physicians in diagnosing or treating their patients health issues more efficiently.
疾病自动诊断的临床决策支持框架
在早期发现疾病有助于克服和准确治疗疾病。确定适当的治疗取决于诊断疾病所使用的方法。临床决策支持系统(CDS)可以极大地帮助确定疾病和治疗方法。在本文中,我们提出了一个CDS框架,该框架可以整合来自不同来源的异构健康数据,如实验室检测结果、患者基本信息和健康记录。利用收集到的电子健康医疗数据,采用创新的机器学习和深度学习方法来实施一套服务,以推荐一系列疾病,从而帮助医生更有效地诊断或治疗患者的健康问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信