Arrhythmia Multiple Categories Recognition based on PCA-KNN Clustering Model

Runchuan Li, Shasha Ji, Shengya Shen, Panle Li, Xu Wang, Tiantian Xie, Xingjin Zhang, Zongmin Wang
{"title":"Arrhythmia Multiple Categories Recognition based on PCA-KNN Clustering Model","authors":"Runchuan Li, Shasha Ji, Shengya Shen, Panle Li, Xu Wang, Tiantian Xie, Xingjin Zhang, Zongmin Wang","doi":"10.1109/ISNE.2019.8896411","DOIUrl":null,"url":null,"abstract":"Severe arrhythmia can threaten human life, therefore, the timely detection of arrhythmia is important. In this paper, a clustering method of arrhythmia based on PCA-KNN is proposed. Firstly, P-QRS-T waves are extracted. Then the principal component analysis PCA) algorithm is used to reduce the dimension of high-dimensional heartbeat. Finally, k-nearest neighbor (KNN) method of recognition arrhythmia. Experiments on MIT-BIH arrhythmia database show that compared with most of the most advanced arrhythmia recognition methods, the accuracy of this clustering model is as high as 98.99%.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Severe arrhythmia can threaten human life, therefore, the timely detection of arrhythmia is important. In this paper, a clustering method of arrhythmia based on PCA-KNN is proposed. Firstly, P-QRS-T waves are extracted. Then the principal component analysis PCA) algorithm is used to reduce the dimension of high-dimensional heartbeat. Finally, k-nearest neighbor (KNN) method of recognition arrhythmia. Experiments on MIT-BIH arrhythmia database show that compared with most of the most advanced arrhythmia recognition methods, the accuracy of this clustering model is as high as 98.99%.
基于PCA-KNN聚类模型的心律失常多类别识别
严重的心律失常会威胁到人的生命,因此,及时发现心律失常非常重要。本文提出了一种基于PCA-KNN的心律失常聚类方法。首先提取P-QRS-T波;然后采用主成分分析(PCA)算法对高维心跳进行降维处理。最后,采用k-最近邻(KNN)方法识别心律失常。在MIT-BIH心律失常数据库上的实验表明,与大多数最先进的心律失常识别方法相比,该聚类模型的准确率高达98.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信