Multi-label Text Classification and Text Adversarial Attack

Yi-Fan Song, Zhenyan Liu, Chunxia Zhang
{"title":"Multi-label Text Classification and Text Adversarial Attack","authors":"Yi-Fan Song, Zhenyan Liu, Chunxia Zhang","doi":"10.1109/ICAA53760.2021.00098","DOIUrl":null,"url":null,"abstract":"Multi-label classification is an extension of multi-class classification. For multi-label problem, each instance may not be restricted to have only one label. In this paper, the methods to solve multi-label classification are divided into four aspects which are binary relevance method, label combination method, classifier chain and ensemble classifier chain. In order to enhance the performance of the text classifier, text adversarial attack should be used to enrich the training dataset. Thus, the related works with text adversarial attack are also introduced. In the end, we also explore some potential future issues in multi-label text classification and text adversarial attack.","PeriodicalId":121879,"journal":{"name":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA53760.2021.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-label classification is an extension of multi-class classification. For multi-label problem, each instance may not be restricted to have only one label. In this paper, the methods to solve multi-label classification are divided into four aspects which are binary relevance method, label combination method, classifier chain and ensemble classifier chain. In order to enhance the performance of the text classifier, text adversarial attack should be used to enrich the training dataset. Thus, the related works with text adversarial attack are also introduced. In the end, we also explore some potential future issues in multi-label text classification and text adversarial attack.
多标签文本分类与文本对抗攻击
多标签分类是多类分类的扩展。对于多标签问题,可以不限制每个实例只有一个标签。本文将解决多标签分类问题的方法分为二元关联法、标签组合法、分类器链和集成分类器链四个方面。为了提高文本分类器的性能,应该使用文本对抗攻击来丰富训练数据集。在此基础上,介绍了文本对抗性攻击的相关工作。最后,我们还探讨了在多标签文本分类和文本对抗性攻击方面可能存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信