Hemodynamic Estimation Based on Consensus Clustering

S. Badillo, G. Varoquaux, P. Ciuciu
{"title":"Hemodynamic Estimation Based on Consensus Clustering","authors":"S. Badillo, G. Varoquaux, P. Ciuciu","doi":"10.1109/PRNI.2013.61","DOIUrl":null,"url":null,"abstract":"Modern cognitive experiments in functional Magnetic Resonance Imaging (fMRI) often aim at understanding the temporal dynamics of the brain response in regions activated by a given stimulus. The study of the variability of the hemodynamic response function (HRF) and its characteristics can provide some answers. In this context, we aim at improving the accuracy of the HRF estimation. To do so, we relied on a Joint-Detection-Estimation (JDE) framework that enables robust detection of brain activity as well as HRF estimation, in a Bayesian setting [2]. So far, the hemodynamic results provided by the JDE formalism have depended on a prior parcellation of the data performed before JDE inference. In this study, we propose a new approach to relax this prior knowledge: using consensus clustering techniques based on random parcellations of the data, we combine hemodynamics results provided by different parcellations, so as to robustify the HRF estimation.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Modern cognitive experiments in functional Magnetic Resonance Imaging (fMRI) often aim at understanding the temporal dynamics of the brain response in regions activated by a given stimulus. The study of the variability of the hemodynamic response function (HRF) and its characteristics can provide some answers. In this context, we aim at improving the accuracy of the HRF estimation. To do so, we relied on a Joint-Detection-Estimation (JDE) framework that enables robust detection of brain activity as well as HRF estimation, in a Bayesian setting [2]. So far, the hemodynamic results provided by the JDE formalism have depended on a prior parcellation of the data performed before JDE inference. In this study, we propose a new approach to relax this prior knowledge: using consensus clustering techniques based on random parcellations of the data, we combine hemodynamics results provided by different parcellations, so as to robustify the HRF estimation.
基于一致聚类的血流动力学估计
功能磁共振成像(fMRI)的现代认知实验通常旨在了解在给定刺激激活区域的大脑反应的时间动态。血液动力学反应函数(HRF)的变异性及其特征的研究可以提供一些答案。在这种情况下,我们的目标是提高HRF估计的准确性。为此,我们依赖于联合检测-估计(JDE)框架,该框架能够在贝叶斯设置下对大脑活动进行鲁棒检测以及HRF估计。到目前为止,由JDE形式化提供的血流动力学结果依赖于在JDE推断之前执行的数据的预先分割。在这项研究中,我们提出了一种新的方法来放松这种先验知识:使用基于数据随机分组的共识聚类技术,我们将不同分组提供的血流动力学结果结合起来,从而增强HRF估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信