Kinsight: Localizing and Tracking Household Objects Using Depth-Camera Sensors

S. Nirjon, J. Stankovic
{"title":"Kinsight: Localizing and Tracking Household Objects Using Depth-Camera Sensors","authors":"S. Nirjon, J. Stankovic","doi":"10.1109/DCOSS.2012.27","DOIUrl":null,"url":null,"abstract":"We solve the problem of localizing and tracking household objects using a depth-camera sensor network. We design and implement Kin sight that tracks household objects indirectly -- by tracking human figures, and detecting and recognizing objects from human-object interactions. We devise two novel algorithms: (1) Depth Sweep -- that uses depth information to efficiently extract objects from an image, and (2) Context Oriented Object Recognition -- that uses location history and activity context along with an RGB image to recognize object sat home. We thoroughly evaluate Kinsight's performance with a rich set of controlled experiments. We also deploy Kinsightin real-world scenarios and show that it achieves an average localization error of about 13 cm.","PeriodicalId":448418,"journal":{"name":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We solve the problem of localizing and tracking household objects using a depth-camera sensor network. We design and implement Kin sight that tracks household objects indirectly -- by tracking human figures, and detecting and recognizing objects from human-object interactions. We devise two novel algorithms: (1) Depth Sweep -- that uses depth information to efficiently extract objects from an image, and (2) Context Oriented Object Recognition -- that uses location history and activity context along with an RGB image to recognize object sat home. We thoroughly evaluate Kinsight's performance with a rich set of controlled experiments. We also deploy Kinsightin real-world scenarios and show that it achieves an average localization error of about 13 cm.
Kinsight:使用深度相机传感器定位和跟踪家庭物体
我们使用深度相机传感器网络解决了定位和跟踪家庭物体的问题。我们设计并实现了Kin sight,它可以间接跟踪家庭物品——通过跟踪人物形象,并从人与物的交互中检测和识别物体。我们设计了两种新的算法:(1)深度扫描——使用深度信息有效地从图像中提取物体;(2)面向上下文的物体识别——使用位置历史和活动背景以及RGB图像来识别物体。我们通过一组丰富的对照实验彻底评估了Kinsight的性能。我们还在实际场景中部署了kinsighin,并表明它实现了约13厘米的平均定位误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信