Archive film defect detection based on a hidden Markov model

Xiaosong Wang, M. Mirmehdi
{"title":"Archive film defect detection based on a hidden Markov model","authors":"Xiaosong Wang, M. Mirmehdi","doi":"10.1109/WIAMIS.2009.5031490","DOIUrl":null,"url":null,"abstract":"We propose a novel statistical approach to detect defects in digitized archive film by using temporal information across a number of frames modeled with an HMM. The HMM is trained for normal observation sequences and then applied within a framework to detect defective pixels by examining each new observation sequence and its subformations via a leave-one-out process. We compare against state-of-the-art results to demonstrate that the proposed method achieves better detection rates, with fewer false alarms.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel statistical approach to detect defects in digitized archive film by using temporal information across a number of frames modeled with an HMM. The HMM is trained for normal observation sequences and then applied within a framework to detect defective pixels by examining each new observation sequence and its subformations via a leave-one-out process. We compare against state-of-the-art results to demonstrate that the proposed method achieves better detection rates, with fewer false alarms.
基于隐马尔可夫模型的档案胶片缺陷检测
我们提出了一种新的统计方法,通过使用HMM建模的多帧时间信息来检测数字化档案电影中的缺陷。HMM被训练为正常的观察序列,然后在一个框架内应用,通过留一过程检查每个新的观察序列及其子序列来检测缺陷像素。我们与最先进的结果进行比较,以证明所提出的方法实现了更好的检测率,具有更少的误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信