An FPGA Implementation of On-Chip Trainable Multilayer SAM Spiking Neural Network

M. Motoki, Ryuji Waseda, Terumitsu Nishimuta
{"title":"An FPGA Implementation of On-Chip Trainable Multilayer SAM Spiking Neural Network","authors":"M. Motoki, Ryuji Waseda, Terumitsu Nishimuta","doi":"10.12792/ICIAE2021.027","DOIUrl":null,"url":null,"abstract":"This paper describes an implementation of a multilayer SAM spiking neural network into the PL logic part (FPGA) in a Xilinx Zynq processor. The SAM neuron model is a type of one of the most popular LIF spiking neuron model. The SAM neural network can be an on-chip trainable model because the model does not require any multiplier under our proposed Back Propagation (BP) base training algorithm. As a result, the model achieved an XOR logic element in a unit of spikes. Moreover, we achieved a multiplier-less implementation with our intended algorithm and architecture. The design allows an arbitrary number setting for the hidden and output neurons.","PeriodicalId":161085,"journal":{"name":"The Proceedings of The 9th IIAE International Conference on Industrial Application Engineering 2020","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Proceedings of The 9th IIAE International Conference on Industrial Application Engineering 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12792/ICIAE2021.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes an implementation of a multilayer SAM spiking neural network into the PL logic part (FPGA) in a Xilinx Zynq processor. The SAM neuron model is a type of one of the most popular LIF spiking neuron model. The SAM neural network can be an on-chip trainable model because the model does not require any multiplier under our proposed Back Propagation (BP) base training algorithm. As a result, the model achieved an XOR logic element in a unit of spikes. Moreover, we achieved a multiplier-less implementation with our intended algorithm and architecture. The design allows an arbitrary number setting for the hidden and output neurons.
片上可训练多层SAM脉冲神经网络的FPGA实现
本文描述了在Xilinx Zynq处理器的PL逻辑部分(FPGA)中实现多层SAM尖峰神经网络。SAM神经元模型是目前最流行的一种LIF脉冲神经元模型。在我们提出的反向传播(BP)基础训练算法下,SAM神经网络不需要任何乘法器,因此可以成为片上可训练模型。因此,该模型在一个尖峰单元中实现了异或逻辑元素。此外,我们还使用预期的算法和体系结构实现了一个无乘数的实现。该设计允许对隐藏和输出神经元进行任意数量的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信