Hybrid Fixed-point/Binary Convolutional Neural Network Accelerator for Real-time Tactile Processing

H. Younes, A. Ibrahim, M. Rizk, M. Valle
{"title":"Hybrid Fixed-point/Binary Convolutional Neural Network Accelerator for Real-time Tactile Processing","authors":"H. Younes, A. Ibrahim, M. Rizk, M. Valle","doi":"10.1109/icecs53924.2021.9665586","DOIUrl":null,"url":null,"abstract":"This paper presents the architecture and the implementation for a hybrid fixed-point binary convolutional neural network (H-CNN) targeting tactile data processing application. H-CNN combines quantization and binarization operations to achieve a low computational complexity with an acceptable accuracy. When implemented on FPGA, H-CNN architecture achieved a real-time classification i.e. 0.8 ms while consuming 53 mW dynamic power. Compared to existing solutions, H-CNN offers a speedup of up to 6875× with 99.6% energy reduction while recording up to 7% increase in the classification accuracy of touch modalities.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the architecture and the implementation for a hybrid fixed-point binary convolutional neural network (H-CNN) targeting tactile data processing application. H-CNN combines quantization and binarization operations to achieve a low computational complexity with an acceptable accuracy. When implemented on FPGA, H-CNN architecture achieved a real-time classification i.e. 0.8 ms while consuming 53 mW dynamic power. Compared to existing solutions, H-CNN offers a speedup of up to 6875× with 99.6% energy reduction while recording up to 7% increase in the classification accuracy of touch modalities.
用于实时触觉处理的混合定点/二元卷积神经网络加速器
提出了一种针对触觉数据处理应用的混合不动点二值卷积神经网络(H-CNN)的体系结构和实现方法。H-CNN结合量化和二值化操作,实现了较低的计算复杂度和可接受的精度。当在FPGA上实现时,H-CNN架构在消耗53 mW动态功率的情况下实现了0.8 ms的实时分类。与现有的解决方案相比,H-CNN提供了高达6875倍的加速,减少了99.6%的能量,同时记录了高达7%的触摸模式分类精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信