R.E. Bruck, proof mining and a rate of asymptotic regularity for ergodic averages in Banach spaces

Anton Freund, U. Kohlenbach
{"title":"R.E. Bruck, proof mining and a rate of asymptotic regularity for ergodic averages in Banach spaces","authors":"Anton Freund, U. Kohlenbach","doi":"10.23952/asvao.4.2022.3.06","DOIUrl":null,"url":null,"abstract":"We analyze a proof of Bruck to obtain an explicit rate of asymptotic regularity for Ces`aro means in uniformly convex Banach spaces. Our rate will only depend on a norm bound and a modulus η of uniform convexity. One ingredient for the proof by Bruck is a result of Pisier, which shows that every uniformly convex (in fact every uniformly nonsquare) Banach space has some Rademacher type q > 1 with a suitable constant C q . We explicitly determine q and C q , which only depend on the single value η (1) of our modulus. Beyond these specific results, we summarize how work of Bruck has inspired developments in the proof mining program, which applies tools from logic to obtain results in various areas of mathematics.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.4.2022.3.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze a proof of Bruck to obtain an explicit rate of asymptotic regularity for Ces`aro means in uniformly convex Banach spaces. Our rate will only depend on a norm bound and a modulus η of uniform convexity. One ingredient for the proof by Bruck is a result of Pisier, which shows that every uniformly convex (in fact every uniformly nonsquare) Banach space has some Rademacher type q > 1 with a suitable constant C q . We explicitly determine q and C q , which only depend on the single value η (1) of our modulus. Beyond these specific results, we summarize how work of Bruck has inspired developments in the proof mining program, which applies tools from logic to obtain results in various areas of mathematics.
R.E. Bruck, Banach空间中遍历平均的证明挖掘和渐近正则率
我们分析了Bruck的一个证明,得到了一致凸Banach空间中Ces’aro均值的渐近正则性的显式速率。我们的速率只取决于范数界和一致凸性的模η。Bruck证明的一个组成部分是Pisier的结果,该结果表明,每个一致凸(实际上是每个一致非平方)Banach空间都有一些Rademacher类型q > 1,具有合适的常数C q。我们明确地确定了q和cq,它们只依赖于模的单值η(1)。除了这些具体的结果,我们总结了Bruck的工作如何启发了证明挖掘程序的发展,该程序应用逻辑工具来获得数学各个领域的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信