Evaluating visual and textual features for predicting user ‘likes’

Sharath Chandra Guntuku, S. Roy, Weisi Lin
{"title":"Evaluating visual and textual features for predicting user ‘likes’","authors":"Sharath Chandra Guntuku, S. Roy, Weisi Lin","doi":"10.1109/ICME.2015.7177381","DOIUrl":null,"url":null,"abstract":"Computationally modeling users `liking' for image(s) requires understanding how to effectively represent the image so that different factors influencing user `likes' are considered. In this work, an evaluation of the state-of-the-art visual features in multimedia understanding at the task of predicting user `likes' is presented, based on a collection of images crawled from Flickr. Secondly, a probabilistic approach for modeling `likes' based only on tags is proposed. The approach of using both visual and text-based features is shown to improve the state-of-the-art performance by 12%. Analysis of the results indicate that more human-interpretable and semantic representations are important for the task of predicting very subtle response of `likes'.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Computationally modeling users `liking' for image(s) requires understanding how to effectively represent the image so that different factors influencing user `likes' are considered. In this work, an evaluation of the state-of-the-art visual features in multimedia understanding at the task of predicting user `likes' is presented, based on a collection of images crawled from Flickr. Secondly, a probabilistic approach for modeling `likes' based only on tags is proposed. The approach of using both visual and text-based features is shown to improve the state-of-the-art performance by 12%. Analysis of the results indicate that more human-interpretable and semantic representations are important for the task of predicting very subtle response of `likes'.
评估用于预测用户“喜欢”的视觉和文本特征
计算建模用户对图像的“喜欢”需要理解如何有效地表示图像,以便考虑影响用户“喜欢”的不同因素。在这项工作中,基于从Flickr抓取的图像集合,对预测用户“喜欢”任务中多媒体理解中最先进的视觉特征进行了评估。其次,提出了一种仅基于标签的“喜欢”建模的概率方法。同时使用视觉和基于文本的特征的方法可以将最先进的性能提高12%。对结果的分析表明,更多的人类可解释和语义表示对于预测非常微妙的“喜欢”反应的任务很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信