Swarm fuzzy inference system and R wave features for ventricular premature beat detection

N. Nuryani, I. Yahya, Anik Lestari
{"title":"Swarm fuzzy inference system and R wave features for ventricular premature beat detection","authors":"N. Nuryani, I. Yahya, Anik Lestari","doi":"10.1109/CYBERNETICSCOM.2013.6865790","DOIUrl":null,"url":null,"abstract":"This article introduces a new strategy to detect a ventricular premature beat (VPB). The strategy utilized a swarm fuzzy inference system (SFIS) and features of the R wave of electrocardiogram. SFIS was a FIS optimized using particle swarm optimization (PSO). The PSO was used to find the optimal parameters of the FIS. The fuzzification part of the FIS used a Gaussian function. The inputs of the FIS were the width and the gradient of the R wave. Using clinical data, the proposed strategy performed well for VPB detection with sensitivity, specificity and accuracy of 99.05%, 99.64% and 99.59%, respectively.","PeriodicalId":351051,"journal":{"name":"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERNETICSCOM.2013.6865790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article introduces a new strategy to detect a ventricular premature beat (VPB). The strategy utilized a swarm fuzzy inference system (SFIS) and features of the R wave of electrocardiogram. SFIS was a FIS optimized using particle swarm optimization (PSO). The PSO was used to find the optimal parameters of the FIS. The fuzzification part of the FIS used a Gaussian function. The inputs of the FIS were the width and the gradient of the R wave. Using clinical data, the proposed strategy performed well for VPB detection with sensitivity, specificity and accuracy of 99.05%, 99.64% and 99.59%, respectively.
群模糊推理系统及R波特征在室性早搏检测中的应用
本文介绍一种检测室性早搏(VPB)的新方法。该策略利用了群模糊推理系统(SFIS)和心电图R波的特点。SFIS是一种采用粒子群算法(PSO)进行优化的FIS。利用粒子群算法求出FIS的最优参数。FIS的模糊化部分使用高斯函数。FIS的输入是R波的宽度和梯度。临床数据表明,该方法检测VPB的灵敏度、特异性和准确性分别为99.05%、99.64%和99.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信