Context-extended phrase reordering model for pivot-based statistical machine translation

Xiaoning Zhu, T. Zhao, Yiming Cui, Conghui Zhu
{"title":"Context-extended phrase reordering model for pivot-based statistical machine translation","authors":"Xiaoning Zhu, T. Zhao, Yiming Cui, Conghui Zhu","doi":"10.1109/IALP.2015.7451524","DOIUrl":null,"url":null,"abstract":"For translation between language pairs which is lack of bilingual data, pivot-based SMT uses a pivot language as a “bridge” to generate source-target translation, inducing from source-pivot and pivot-target translation. However, due to the missing of the context information, the reordering model was hard to obtain with the conventional methods. In this paper, we present a context-extended phrase reordering model for pivot-based statistical machine translation by extending the context information in source, pivot and target language. Experimental results show that our method leads to significant improvements over the baseline system on European Parliament data.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For translation between language pairs which is lack of bilingual data, pivot-based SMT uses a pivot language as a “bridge” to generate source-target translation, inducing from source-pivot and pivot-target translation. However, due to the missing of the context information, the reordering model was hard to obtain with the conventional methods. In this paper, we present a context-extended phrase reordering model for pivot-based statistical machine translation by extending the context information in source, pivot and target language. Experimental results show that our method leads to significant improvements over the baseline system on European Parliament data.
基于数据轴的统计机器翻译语境扩展短语重排模型
对于缺乏双语数据的语言对之间的翻译,基于支点的SMT使用支点语言作为“桥梁”来生成源-目标翻译,从源-支点和支点-目标翻译进行归纳。然而,由于上下文信息的缺失,用传统的方法很难获得重排序模型。本文通过扩展源语言、中心语言和目标语言的上下文信息,提出了一种基于上下文扩展的统计机器翻译短语重排模型。实验结果表明,我们的方法比欧洲议会数据的基线系统有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信