Semi-supervised object recognition using flickr images

E. Chatzilari, S. Nikolopoulos, S. Papadopoulos, Christos Zigkolis, Y. Kompatsiaris
{"title":"Semi-supervised object recognition using flickr images","authors":"E. Chatzilari, S. Nikolopoulos, S. Papadopoulos, Christos Zigkolis, Y. Kompatsiaris","doi":"10.1109/CBMI.2011.5972550","DOIUrl":null,"url":null,"abstract":"In this work we present an algorithm for extracting region level annotations from flickr images using a small set of manually labelled regions to guide the selection process. More specifically, we construct a set of flickr images that focuses on a certain concept and apply a novel graph based clustering algorithm on their regions. Then, we select the cluster or clusters that correspond to the examined concept guided by the manually labelled data. Experimental results show that although the obtained regions are of lower quality compared to the manually labelled regions, the gain in effort compensates for the loss in performance.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2011.5972550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this work we present an algorithm for extracting region level annotations from flickr images using a small set of manually labelled regions to guide the selection process. More specifically, we construct a set of flickr images that focuses on a certain concept and apply a novel graph based clustering algorithm on their regions. Then, we select the cluster or clusters that correspond to the examined concept guided by the manually labelled data. Experimental results show that although the obtained regions are of lower quality compared to the manually labelled regions, the gain in effort compensates for the loss in performance.
使用flickr图像的半监督对象识别
在这项工作中,我们提出了一种从flickr图像中提取区域级注释的算法,该算法使用一小组手动标记的区域来指导选择过程。更具体地说,我们构建了一组关注某个概念的flickr图像,并在其区域上应用了一种新的基于图的聚类算法。然后,我们在手动标记的数据指导下选择与检查概念对应的集群。实验结果表明,尽管与人工标记的区域相比,获得的区域质量较低,但努力的增加弥补了性能的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信