Probable Biomarker Identification Using Recursive Feature Extraction and Network Analysis

Arpita Mishra, Abhishek Gupta, Umesh Maheswari, Laeeq Siddique
{"title":"Probable Biomarker Identification Using Recursive Feature Extraction and Network Analysis","authors":"Arpita Mishra, Abhishek Gupta, Umesh Maheswari, Laeeq Siddique","doi":"10.1109/ICDMW.2017.67","DOIUrl":null,"url":null,"abstract":"Biomarkers have tremendous potential in different phases of treatment such as risk assessment, screening/detection, diagnosis and patient's response prediction. In this paper, we present an approach for development of a generic tool for an end to end analysis of expression data to identify the probable biomarkers. We follow machine learning as well as network analysis approaches in parallel. We use statistical techniques as preliminaries for quality analysis, followed by the feature (gene) selection approach. For network analysis techniques we use measures such as eigen centrality, closeness centrality and betweenness centrality to filter the most influential mutated genes which act as biomarkers.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Biomarkers have tremendous potential in different phases of treatment such as risk assessment, screening/detection, diagnosis and patient's response prediction. In this paper, we present an approach for development of a generic tool for an end to end analysis of expression data to identify the probable biomarkers. We follow machine learning as well as network analysis approaches in parallel. We use statistical techniques as preliminaries for quality analysis, followed by the feature (gene) selection approach. For network analysis techniques we use measures such as eigen centrality, closeness centrality and betweenness centrality to filter the most influential mutated genes which act as biomarkers.
基于递归特征提取和网络分析的可能生物标志物识别
生物标志物在风险评估、筛查/检测、诊断和患者反应预测等治疗的不同阶段具有巨大的潜力。在本文中,我们提出了一种开发通用工具的方法,用于对表达数据进行端到端分析,以识别可能的生物标志物。我们同时遵循机器学习和网络分析方法。我们使用统计技术作为质量分析的初步方法,然后是特征(基因)选择方法。对于网络分析技术,我们使用特征中心性、接近中心性和中间中心性等措施来过滤作为生物标志物的最具影响力的突变基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信