Gaussian Interference Channel Capacity to Within One Bit: the Symmetric Case

R. Etkin, David Tse, Hua Wang
{"title":"Gaussian Interference Channel Capacity to Within One Bit: the Symmetric Case","authors":"R. Etkin, David Tse, Hua Wang","doi":"10.1109/ITW2.2006.323705","DOIUrl":null,"url":null,"abstract":"The capacity of the two-user Gaussian interference channel has been open for thirty years. The understanding on this problem has been limited. The best known achievable region is due to Han-Kobayashi but its characterization is very complicated. It is also not known how tight the existing outer bounds are. In this work, we show that the existing outer bounds can in fact be arbitrarily loose in some parameter ranges, and by deriving new outer bounds, we show that a simplified Han-Kobayashi type scheme can achieve to within a single bit the capacity for all values of the channel parameters. We also show that the scheme is asymptotically optimal at certain high SNR regimes. Using our results, we provide a natural generalization of the point-to-point classical notion of degrees of freedom to interference-limited scenarios","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"7 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The capacity of the two-user Gaussian interference channel has been open for thirty years. The understanding on this problem has been limited. The best known achievable region is due to Han-Kobayashi but its characterization is very complicated. It is also not known how tight the existing outer bounds are. In this work, we show that the existing outer bounds can in fact be arbitrarily loose in some parameter ranges, and by deriving new outer bounds, we show that a simplified Han-Kobayashi type scheme can achieve to within a single bit the capacity for all values of the channel parameters. We also show that the scheme is asymptotically optimal at certain high SNR regimes. Using our results, we provide a natural generalization of the point-to-point classical notion of degrees of freedom to interference-limited scenarios
高斯干扰信道容量到1位以内:对称情况
双用户高斯干扰信道的容量已经开放了三十年。对这个问题的认识一直很有限。最著名的可实现区域是Han-Kobayashi,但其特征非常复杂。目前也不知道现有的外部边界有多紧。在这项工作中,我们证明了现有的外边界实际上可以在某些参数范围内任意松散,并且通过推导新的外边界,我们证明了一个简化的Han-Kobayashi型方案可以在单个比特内实现所有信道参数值的容量。我们还证明了该方案在某些高信噪比条件下是渐近最优的。利用我们的结果,我们提供了点对点的经典自由度概念的自然推广到干扰限制的场景
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信