A study of relevance for learning in deductive databases

Nada Lavrač , Dragan Gamberger , Viktor Jovanoski
{"title":"A study of relevance for learning in deductive databases","authors":"Nada Lavrač ,&nbsp;Dragan Gamberger ,&nbsp;Viktor Jovanoski","doi":"10.1016/S0743-1066(99)00019-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a study of the problem of relevance in inductive concept learning. It gives definitions of irrelevant literals and irrelevant examples and presents efficient algorithms that enable their elimination. The proposed approach is directly applicable in propositional learning and in relation learning tasks that can be solved using a LINUS transformation approach. A simple inductive logic programming (ILP) problem is used to illustrate the approach to irrelevant literal and example elimination. Results of utility studies show the usefulness of literal reduction applied in LINUS and in the search of refinement graphs.</p></div>","PeriodicalId":101236,"journal":{"name":"The Journal of Logic Programming","volume":"40 2","pages":"Pages 215-249"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0743-1066(99)00019-9","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743106699000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper is a study of the problem of relevance in inductive concept learning. It gives definitions of irrelevant literals and irrelevant examples and presents efficient algorithms that enable their elimination. The proposed approach is directly applicable in propositional learning and in relation learning tasks that can be solved using a LINUS transformation approach. A simple inductive logic programming (ILP) problem is used to illustrate the approach to irrelevant literal and example elimination. Results of utility studies show the usefulness of literal reduction applied in LINUS and in the search of refinement graphs.

演绎数据库中学习的相关性研究
本文主要研究归纳概念学习中的关联问题。它给出了不相关的文字和不相关的例子的定义,并提出了有效的算法,使他们能够消除。该方法直接适用于命题学习和关系学习任务,可以使用LINUS变换方法来解决。用一个简单的归纳逻辑规划(ILP)问题来说明不相关文字和示例消除的方法。效用研究的结果表明,文字约简在LINUS和搜索细化图中的应用是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信