A High Throughput Multi Symbol CABAC Framework for Hybrid Video Codecs

K. Rapaka, E. Yang
{"title":"A High Throughput Multi Symbol CABAC Framework for Hybrid Video Codecs","authors":"K. Rapaka, E. Yang","doi":"10.1109/DCC.2013.94","DOIUrl":null,"url":null,"abstract":"Summary form only given. This paper proposes a Multi-Symbol Context Adaptive Binary Arithmetic Coding (CABAC) Framework in Hybrid Video Coding. Advanced CABAC techniques have been employed in popular video coding technologies like H264-AVC, HEVC. The proposed framework aims at extending these technique by providing symbol level scalability in being able to code one or multi-symbols at a time without changing the existing framework. Such a coding not only can exploit higher order statistical dependencies on a syntax element level but also reduce the number of coded bins. New syntax elements and their Probability modeling are proposed as extensions to achieve Multi-Symbol coding. An example variant of this framework, that is coding only maximum of two symbols at a time for quantized coefficient Indices, was implemented on top of JM18.3-H264 CABAC. This example extension when tested with on HEVC test Sequences shows significant throughput improvement (i.e., significant reduction in number of bins to be coded) and at the same time reduces Bit-rate significantly. The Frame-work can be seamlessly extended to code Multiple Symbols greater than two.","PeriodicalId":388717,"journal":{"name":"2013 Data Compression Conference","volume":"18 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2013.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. This paper proposes a Multi-Symbol Context Adaptive Binary Arithmetic Coding (CABAC) Framework in Hybrid Video Coding. Advanced CABAC techniques have been employed in popular video coding technologies like H264-AVC, HEVC. The proposed framework aims at extending these technique by providing symbol level scalability in being able to code one or multi-symbols at a time without changing the existing framework. Such a coding not only can exploit higher order statistical dependencies on a syntax element level but also reduce the number of coded bins. New syntax elements and their Probability modeling are proposed as extensions to achieve Multi-Symbol coding. An example variant of this framework, that is coding only maximum of two symbols at a time for quantized coefficient Indices, was implemented on top of JM18.3-H264 CABAC. This example extension when tested with on HEVC test Sequences shows significant throughput improvement (i.e., significant reduction in number of bins to be coded) and at the same time reduces Bit-rate significantly. The Frame-work can be seamlessly extended to code Multiple Symbols greater than two.
用于混合视频编解码器的高吞吐量多符号CABAC框架
只提供摘要形式。提出了一种用于混合视频编码的多符号上下文自适应二进制算术编码(CABAC)框架。先进的CABAC技术已应用于H264-AVC、HEVC等流行的视频编码技术中。提出的框架旨在通过提供符号级可扩展性来扩展这些技术,从而能够在不改变现有框架的情况下一次编码一个或多个符号。这样的编码不仅可以利用语法元素级别上的高阶统计依赖关系,还可以减少编码箱的数量。提出了新的语法元素及其概率建模作为实现多符号编码的扩展。该框架的一个示例变体是在JM18.3-H264 CABAC之上实现的,它一次只对量化系数索引编码最多两个符号。当在HEVC测试序列上测试时,这个示例扩展显示出显着的吞吐量改进(即,要编码的箱子数量显着减少),同时显着降低比特率。框架可以无缝地扩展到编码大于2的多个符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信