Accurate estimation of primary user traffic based on periodic spectrum sensing

Ahmed Al-Tahmeesschi, M. López-Benítez, Janne J. Lehtomäki, K. Umebayashi
{"title":"Accurate estimation of primary user traffic based on periodic spectrum sensing","authors":"Ahmed Al-Tahmeesschi, M. López-Benítez, Janne J. Lehtomäki, K. Umebayashi","doi":"10.1109/WCNC.2018.8377169","DOIUrl":null,"url":null,"abstract":"An accurate estimation of the primary statistics is essential for Cognitive Radio (CR) systems. This knowledge can be exploited to enhance CR performance and reduce the interference with the primary users. In this work, we propose a method based on the Method of Moments (MoM) to improve the distribution estimation. A Modified Method of Moments (MMoM) with a correction factor is proposed to improve the estimation of moments and thus the resulting primary distribution. The simulation and experimental results show that the MMoM approach is notably more accurate. Finally, we study the importance of having a sufficiently large sample space and the effect of sample size on the moments and the primary distribution estimation.","PeriodicalId":360054,"journal":{"name":"2018 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2018.8377169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

An accurate estimation of the primary statistics is essential for Cognitive Radio (CR) systems. This knowledge can be exploited to enhance CR performance and reduce the interference with the primary users. In this work, we propose a method based on the Method of Moments (MoM) to improve the distribution estimation. A Modified Method of Moments (MMoM) with a correction factor is proposed to improve the estimation of moments and thus the resulting primary distribution. The simulation and experimental results show that the MMoM approach is notably more accurate. Finally, we study the importance of having a sufficiently large sample space and the effect of sample size on the moments and the primary distribution estimation.
基于周期频谱感知的主用户流量精确估计
对初级统计量的准确估计是认知无线电(CR)系统的关键。可以利用这些知识来提高CR性能并减少对主要用户的干扰。在这项工作中,我们提出了一种基于矩量法(MoM)的方法来改进分布估计。提出了一种带有修正因子的矩量修正方法,改进了矩量的估计,从而改进了得到的初始分布。仿真和实验结果表明,MMoM方法的精度明显提高。最后,我们研究了有足够大的样本空间的重要性,以及样本大小对矩和初次分布估计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信