A case study of estimating a causal effect using machine learning with Bayesian Additive Regression Trees

Hyekyung Jung
{"title":"A case study of estimating a causal effect using machine learning with Bayesian Additive Regression Trees","authors":"Hyekyung Jung","doi":"10.31158/jeev.2022.35.2.355","DOIUrl":null,"url":null,"abstract":"The study aims to introduce a causal inference method using machine learning to general education researchers, and in particular, focus on the theory and practice of Bayesian Additive Regression Trees algorithm. To analyze the empirical data, public data from the Korean Children and Youth Panel Survey 2018 were used. For an illustrative purpose, this study estimated the causal effect of participation in activities related to self (personality) development on students’ life satisfaction and self-esteem and discussed the feasibility of the BART method in educational impact studies. The applicability of the BART-based machine learning causal inference technique in the field of education was discussed in comparison with model-based propensity score and causal effect estimation. Finally future research topics and limitations of the study were addressed.","PeriodicalId":207460,"journal":{"name":"Korean Society for Educational Evaluation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Society for Educational Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31158/jeev.2022.35.2.355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study aims to introduce a causal inference method using machine learning to general education researchers, and in particular, focus on the theory and practice of Bayesian Additive Regression Trees algorithm. To analyze the empirical data, public data from the Korean Children and Youth Panel Survey 2018 were used. For an illustrative purpose, this study estimated the causal effect of participation in activities related to self (personality) development on students’ life satisfaction and self-esteem and discussed the feasibility of the BART method in educational impact studies. The applicability of the BART-based machine learning causal inference technique in the field of education was discussed in comparison with model-based propensity score and causal effect estimation. Finally future research topics and limitations of the study were addressed.
使用贝叶斯加性回归树的机器学习估计因果效应的案例研究
本研究旨在向普通教育研究人员介绍一种基于机器学习的因果推理方法,重点关注贝叶斯加性回归树算法的理论与实践。为了分析实证数据,使用了2018年韩国儿童和青年小组调查的公开数据。为了说明目的,本研究估计了参与与自我(人格)发展有关的活动对学生生活满意度和自尊的因果关系,并讨论了BART方法在教育影响研究中的可行性。通过与基于模型的倾向评分和因果效应估计的比较,讨论了基于bart的机器学习因果推理技术在教育领域的适用性。最后指出了未来研究的课题和研究的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信