On the Approximability of the Minimum Subgraph Diameter Problem

Arthur Pratti Dadalto, F. Usberti, M. C. S. Felice
{"title":"On the Approximability of the Minimum Subgraph Diameter Problem","authors":"Arthur Pratti Dadalto, F. Usberti, M. C. S. Felice","doi":"10.5753/ETC.2018.3169","DOIUrl":null,"url":null,"abstract":"This work addresses the minimum subgraph diameter problem (MSDP) by answering an open question with respect to its approximability. Given a graph with lengths and costs associated to its edges, the MSDP consists in finding a spanning subgraph with total cost limited by a given budget, such that its diameter is minimum. We prove that there is no -approximation algorithm for the MSDP, for any constant , unless P = NP. Our proof is grounded on the non-approximability of the minimum spanning tree diameter problem, proven by Bálint in 2013.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"3 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ETC.2018.3169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work addresses the minimum subgraph diameter problem (MSDP) by answering an open question with respect to its approximability. Given a graph with lengths and costs associated to its edges, the MSDP consists in finding a spanning subgraph with total cost limited by a given budget, such that its diameter is minimum. We prove that there is no -approximation algorithm for the MSDP, for any constant , unless P = NP. Our proof is grounded on the non-approximability of the minimum spanning tree diameter problem, proven by Bálint in 2013.
最小子图直径问题的逼近性
这项工作解决了最小子图直径问题(MSDP)通过回答一个关于其近似性的开放问题。给定一个图,其长度和成本与其边相关,MSDP包括找到一个总成本受给定预算限制的生成子图,使其直径最小。我们证明了对于任何常数,除非P = NP,否则MSDP不存在-逼近算法。我们的证明是基于2013年Bálint证明的最小生成树直径问题的非近似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信