H. Goldenberg, B. Perez Gandara, J. Perez Perez, A. Bramante, R. Foronjy, A. Dabo, E. Eden, J. Sznitman, P. Geraghty
{"title":"Nicotine in E-Cigarettes Dysregulates Pulmonary Inflammation and MMP-12 Expression without Effecting Respiratory Syncytial Virus Virulence","authors":"H. Goldenberg, B. Perez Gandara, J. Perez Perez, A. Bramante, R. Foronjy, A. Dabo, E. Eden, J. Sznitman, P. Geraghty","doi":"10.3390/JOR1010006","DOIUrl":null,"url":null,"abstract":"The safety of electronic cigarettes (e-cigarettes) is a major topic of discussion. The key goals of this study were to examine the contents of e-cigarette vapor and determine if nicotine altered inflammatory responses against respiratory syncytial virus (RSV) infection. E-cigarette vapor was passed through a hollow 3D-model of an adult lung, and gas chromatography detected over 50 compounds passed through the 3D model, including nicotine, propylene glycol (PG), ethanol, methanol, and diacetyl. The murine alveolar macrophage cell line MH-S cells were exposed to nicotine and e-cigarette vapor with and without nicotine. Nicotine significantly induced the expression of matrix metalloprotease (Mmp) 12 and reduced expression of Ifnβ and Tnfα. To examine the role of nicotine in lung defense against RSV infection, A/J mice were exposed to PBS, e-cigarette vapor with and without nicotine for 2 months before RSV infection. E-cigarette vapor did not influence RSV infection-induced animal weight loss, RSV infectivity, airway hyperresponsiveness during methacholine challenge, or immune cell infiltration into the lungs. However, e-cigarette vapor containing nicotine enhanced obstruction and induced secretion of MMP12 and reduced levels of Ifnβ and TNFα. In conclusion, nicotine in vaping products modulates immune responses that may impact the lungs during a respiratory infection.","PeriodicalId":284235,"journal":{"name":"Journal of Respiration","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Respiration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/JOR1010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The safety of electronic cigarettes (e-cigarettes) is a major topic of discussion. The key goals of this study were to examine the contents of e-cigarette vapor and determine if nicotine altered inflammatory responses against respiratory syncytial virus (RSV) infection. E-cigarette vapor was passed through a hollow 3D-model of an adult lung, and gas chromatography detected over 50 compounds passed through the 3D model, including nicotine, propylene glycol (PG), ethanol, methanol, and diacetyl. The murine alveolar macrophage cell line MH-S cells were exposed to nicotine and e-cigarette vapor with and without nicotine. Nicotine significantly induced the expression of matrix metalloprotease (Mmp) 12 and reduced expression of Ifnβ and Tnfα. To examine the role of nicotine in lung defense against RSV infection, A/J mice were exposed to PBS, e-cigarette vapor with and without nicotine for 2 months before RSV infection. E-cigarette vapor did not influence RSV infection-induced animal weight loss, RSV infectivity, airway hyperresponsiveness during methacholine challenge, or immune cell infiltration into the lungs. However, e-cigarette vapor containing nicotine enhanced obstruction and induced secretion of MMP12 and reduced levels of Ifnβ and TNFα. In conclusion, nicotine in vaping products modulates immune responses that may impact the lungs during a respiratory infection.