A semi-supervised locally linear embedding spectral clustering algorithm

Xi Wu, Wang-jie Sun
{"title":"A semi-supervised locally linear embedding spectral clustering algorithm","authors":"Xi Wu, Wang-jie Sun","doi":"10.1504/IJAMC.2017.10006889","DOIUrl":null,"url":null,"abstract":"Many practical problems can be attributed to the clustering problem. Spectral clustering algorithm can be clustered in any shape of space, and obtain the global optimal solution. Based on the classical Ng-Jordan-Weiss (NJW) algorithm, utilising the supervision information to guide the clustering process, the result of clustering is more accurate. Meanwhile, combined the manifold learning with semi-supervised spectral clustering algorithm, and the data dimension will reduce based on locally linear embedding (LLE). Based on the heuristic thinking, calculated distance matrix, a reasonable number of nearest neighbours could be funded, thus we achieve the purpose of dimension reduction. Moreover, clustering based on reduced dimension data, the same clustering results as the original data could be obtained. Experimental results have shown that this algorithm could achieve better clustering effect on artificial datasets and real datasets.","PeriodicalId":134413,"journal":{"name":"Int. J. Adv. Media Commun.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Adv. Media Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAMC.2017.10006889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many practical problems can be attributed to the clustering problem. Spectral clustering algorithm can be clustered in any shape of space, and obtain the global optimal solution. Based on the classical Ng-Jordan-Weiss (NJW) algorithm, utilising the supervision information to guide the clustering process, the result of clustering is more accurate. Meanwhile, combined the manifold learning with semi-supervised spectral clustering algorithm, and the data dimension will reduce based on locally linear embedding (LLE). Based on the heuristic thinking, calculated distance matrix, a reasonable number of nearest neighbours could be funded, thus we achieve the purpose of dimension reduction. Moreover, clustering based on reduced dimension data, the same clustering results as the original data could be obtained. Experimental results have shown that this algorithm could achieve better clustering effect on artificial datasets and real datasets.
半监督局部线性嵌入谱聚类算法
许多实际问题都可以归结为聚类问题。谱聚类算法可以对任意形状的空间进行聚类,并获得全局最优解。基于经典的Ng-Jordan-Weiss (NJW)算法,利用监督信息指导聚类过程,使聚类结果更加准确。同时,将流形学习与半监督谱聚类算法相结合,基于局部线性嵌入(LLE)实现数据降维。基于启发式思维,计算出距离矩阵,可以得到合理数量的最近邻,从而达到降维的目的。此外,对降维数据进行聚类,可以得到与原始数据相同的聚类结果。实验结果表明,该算法在人工数据集和真实数据集上都能取得较好的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信