{"title":"A method for reducing power consumption of CMOS logic based on signal transition probability","authors":"J. Akita, K. Asada","doi":"10.1109/EDTC.1994.326842","DOIUrl":null,"url":null,"abstract":"Some CMOS gates are topologically asymmetric in inputs, even though they are logically symmetric. It implies a possibility to reduce power consumption by optimizing signal assignment to the inputs. In this study we theoretically derive power consumption of a 2-input NAND gate based on transition probability of input signals, with taking into account charging current due to an internal node. We also propose a signal assignment method to input terminals for reducing power consumption by extending our method for large circuits, and demonstrate the effect of power consumption reduction by the present method.<<ETX>>","PeriodicalId":244297,"journal":{"name":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTC.1994.326842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Some CMOS gates are topologically asymmetric in inputs, even though they are logically symmetric. It implies a possibility to reduce power consumption by optimizing signal assignment to the inputs. In this study we theoretically derive power consumption of a 2-input NAND gate based on transition probability of input signals, with taking into account charging current due to an internal node. We also propose a signal assignment method to input terminals for reducing power consumption by extending our method for large circuits, and demonstrate the effect of power consumption reduction by the present method.<>