Nonlinear non-negative matrix factorization using deep learning

Hui Zhang, Huaping Liu, Rui Song, F. Sun
{"title":"Nonlinear non-negative matrix factorization using deep learning","authors":"Hui Zhang, Huaping Liu, Rui Song, F. Sun","doi":"10.1109/IJCNN.2016.7727237","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the deep learning method to reduce the dimension of the data samples under the framework Non-negative Matrix Factorization (NMF). That is to say, we try to find the good representation of the data samples for the task of NMF. To this end, a nonlinear NMF optimization model is constructed and the optimization algorithm is developed. The experimental results on some benchmark dataset show the nonlinear dimension reduction helps the NMF to improve the clustering performance.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we describe the deep learning method to reduce the dimension of the data samples under the framework Non-negative Matrix Factorization (NMF). That is to say, we try to find the good representation of the data samples for the task of NMF. To this end, a nonlinear NMF optimization model is constructed and the optimization algorithm is developed. The experimental results on some benchmark dataset show the nonlinear dimension reduction helps the NMF to improve the clustering performance.
基于深度学习的非线性非负矩阵分解
本文描述了在非负矩阵分解(NMF)框架下对数据样本进行降维的深度学习方法。也就是说,我们试图为NMF任务找到数据样本的良好表示。为此,建立了非线性NMF优化模型,并开发了优化算法。在一些基准数据集上的实验结果表明,非线性降维有助于NMF提高聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信