{"title":"Fuzzy Based Control of a Flexible Bevel-Tip Needle for Percutaneous Interventions","authors":"K. Halder, M. F. Orlando, R. S. Anand","doi":"10.1109/RO-MAN53752.2022.9900829","DOIUrl":null,"url":null,"abstract":"In Minimal Invasive Surgical procedures, flexible bevel tip needles are widely used for percutaneous interventions due to the advantage of enhancing the target reaching accuracy. Here, the target reaching accuracy suffers due to tissue in-homogeneity, deformation in tissue domain and improper steering techniques. The main objective of the percutaneous interventional procedures is ensuring patient safety and reaching desired target position accurately. Several researchers have al-ready developed many approaches to control the needle steering for precise target reaching. To overcome complex approaches in existing controllers, we have proposed a fuzzy based controller to regulate the needle in a specified plane. Our designed method involves the needle non-holonomic constraints based kinematics inside tissue domain and Lyapunov analysis based fuzzy rule base for fuzzy inference system which ensures the closed loop stability of needling system for percutaneous interventional procedures. We have also validated our designed control scheme through extensive simulations and experimentation in biological tissue.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"1185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In Minimal Invasive Surgical procedures, flexible bevel tip needles are widely used for percutaneous interventions due to the advantage of enhancing the target reaching accuracy. Here, the target reaching accuracy suffers due to tissue in-homogeneity, deformation in tissue domain and improper steering techniques. The main objective of the percutaneous interventional procedures is ensuring patient safety and reaching desired target position accurately. Several researchers have al-ready developed many approaches to control the needle steering for precise target reaching. To overcome complex approaches in existing controllers, we have proposed a fuzzy based controller to regulate the needle in a specified plane. Our designed method involves the needle non-holonomic constraints based kinematics inside tissue domain and Lyapunov analysis based fuzzy rule base for fuzzy inference system which ensures the closed loop stability of needling system for percutaneous interventional procedures. We have also validated our designed control scheme through extensive simulations and experimentation in biological tissue.